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Abstract

In this lab we analyzed datasets of the double Einstein ring system
SDSSJ0946+1006 from the Hubble Space Telescope archive. We found the
angular separation from the lensing galaxy to the inner ring to be 1.275 ±

0.129 arcseconds and to the outer ring to be 2.464 ± 0.129 arcseconds.
Using general relativity, and the previously measured redshifts and F606W
magnitudes of the system, we were able to solve for the mass of the lensing

galaxy using the angular radius of the inner ring. In terms of solar
luminosity, the mass of the lensing galaxy was found to be

3.0217 × 1011
± 6.11 × 1010LJ. We were then able to solve for an upper

limit of the mass to light ratio, 6.98 ± 1.41. The high value of this upper
limit convinces us of the existence of dark matter in the lensing galaxy of

SDSSJ0946+1006.

1 Introduction

SDSSJ0946+1006 is a double Einstein ring system resulting from a lucky
alignment of three light sources and Earth. For such an Einstein ring system,
it is possible to use general relativity to relate the angular radius of the ring
with the mass of the lensing galaxy. Furthermore, knowing the redshifts of
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the lensing galaxy and the annulus would allow us to solve said relation for
the mass of the lensing galaxy completely in terms of the angular radius of
the ring. This method of mass determination, coupled with photometry of
the lensing galaxy, would allow us to calculate the mass to light ratio of said
galaxy, thereby helping us understand the dark matter distributions of the
galaxy.

For this lab, we would require Hubble Space Telescope images of SDSSJ0946+1006
taken free from atmospheric disruption, thereby possessing high enough res-
olution for us to resolve the lensing galaxy of the system along with its two
Einstein rings. We would then analyze the image to find the angular radius
of the first Einstein ring in order to measure the mass content of the lensing
galaxy.

2 Theoretical Considerations

2.1 Gravitational Lensing

When light travels close to a massive object, general relativity dictates that
light bends inwards towards the mass following the curvature in spacetime
introduced by said mass. If an observer is to be located behind the mass
(which is located behind the light source), and is positioned exactly at the
straight line intersecting both the mass and the light source, the observer
would see an annulus around the mass due to this bending of light. This
phenomenon created what is known as an Einstein ring system. In such
Einstein ring systems, the angular separation between the lensing mass and
the annulus, denoted as θ, can be calculated by the equation1:

θ =

√

α0

R0

dL
(1)

Where α0 is the angular bending of the light path as it crosses the grav-
itating mass, R0 is the radius of the gravitating object (assumed to be cir-
cular), and dL is the distance between the observer and the massive object.
In such systems, however, we can solve for α0, resulting in θ as a function
of the mass of the massive object (called the lensing object) and the three

1Einstein, 1936: Lens-Like Action of a Star by the Deviation of Light in the Gravita-
tional Field (Science Vol. 84, No. 2188, pg 506-507)
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distances between the lensing object, the observer, and the annulus by the
equation2:

θE1 =

√

4GM(dS1 − dL

c2(dS1dL)
(2)

Where now dS1 is the distance between the observer and the resulting
annulus, dL is the distance between the observer and the lensing object,
and M is the mass of the lensing object. In the last equation, the angular
distance between the lensing mass and the Einstein ring is denoted as θE1

where the subscript is used as an index shall we have multiple Einstein rings
in the system. It is notable, however, that due to the small value of the
gravitational constant, G, in the numerator, and the large value of the speed
of light, c, in the denominator, we need a lensing object of immense mass to
achieve an annulus located at a distance appreciable enough from the lensing
mass that it is detectable at all using our equipments. A further complication
in observing this phenomenon is the scarcity of a light source and a lensing
mass that is perfectly aligned with our observers on Earth.

Miraculously, our dataset depicts a double Einstein ring system achieved
using a galaxy as its final lensing object. The light from the first light source
was bended by the second object, which also produced light which is bended
by the final lensing galaxy. In addition, the bended light of the first light
source is further bended by the final lensing galaxy. As these three objects
are perfectly aligned with Earth, we can see the bending of the lights as
two luminous rings encircling the final lensing galaxy, with the light from
the closer lensed source forming the inner ring and light from the first light
source as the outer ring.

2.2 Mass Determination of Lensing Objects

If an Einstein ring system is bright enough, spectroscopy can be used to find
the cosmological redshift, z, of the annulus and the lensing object. For low
redshifts (z < 2), the conversion between cosmological redshift and distance
to Earth, d, for known Hubble constant at the current epoch, H0, is given
by3:

2Kalas, 2010: Lab 6 - Gravitational Lensing, pg 12
3Kalas, 2010: Lab 6 - Gravitational Lensing, pg 12
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d ∼

(

c

H0

)(

(z + 1)2
− 1

(z + 1)2 + 1

)

(3)

As such, for bright Einstein ring systems, both the distances between the
observer and the lensing object, and between the observer and the annulus,
can be measured. If additionally the angular separation between the lens-
ing object and the annulus is measured, we can use the two distances and
Equation (2) to solve for the mass of the lensing galaxy.

3 Equipment and Observation

3.1 Hubble Space Telescope

The Hubble Space Telescope (HST) utilizes a 2.4 meter primary mirror or-
biting at 559 km from the ground to take images free from atmospheric
distortion. Our dataset made use of the now retired Wide Field and Plan-
etary Camera 2 (WFPC2), consisting of three Wide Field Cameras (WF1,
WF2, and WF3) and one higher resolution, but correspondingly smaller field
of view Planetary Camera (PC). All four cameras contained an 800x800 pix-
els CCD detector. The three Wide Field Cameras possess a plate scale of 0.1
arcsec/pixel, while the Planetary Camera possess a finer plate scale of 0.046
arcsec/pixel.

3.2 Observation

Our dataset were obtained from the online Hubble archieve4. We selected
four datasets of SDSSJ0946+1006 taken using HST’s WFPC2 camera uti-
lizing the F606W filter. These datasets have HST proposal ID 11202 and
PI Leon Koopmans of the Kapteyn Astronomical Institute. For all datasets,
we chosed to download the pipeline calibrated version, meaning that our
images were already corrected for flat fields, geometric distortions (such as
vigneting), dark counts, and bias.

Our field consisted of observations from four cameras of the WFPC2.
The three Wide Field Cameras are arranged to have an ’L’ shaped field of
view, measuring 160 arcseconds across its two long edges. Nestled at the

4at http://archive.stsci.edu/hst/
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top right corner of this field is the smaller field of view of the Planetary
Camera, a box measuring 36.8 arcseconds across. Our target, the Einstein
Ring System SDSSJ0946+1006, was captured within the field of WF3 located
at the bottom left corner of the entire WFPC2 field of view.

The observation, conducted on December 17 2007 at 21:06:17 UT, utilizes
the F606W filter which spans 1502 angstroms about 5997 angstroms. The
integration time used was 1100 seconds.

3.3 Cosmic Rays and Sky Background

In order to reject cosmic rays, we coadded our four images together by tak-
ing the median of each pixels of the four images. Since it is improbable
for cosmic rays to hit the same pixels on more than one of our images, by
taking the median we could effectively remove them. In practice, before we
coadd them in this manner, we have to first align the four images. This is
because HST’s revolution around the Earth caused an apparent movement of
the Einstein ring system between each exposures. Despite HST’s automatic
tracking system, the pixel location of our target differs considerably between
the images.

In order to align the images, we first determine the centroid pixel positions
of the lensing galaxy of all four images using the IRAF command imcntr. The
values are presented in Table 1. Also presented in the table are the differences
between the galaxy’s centroid of a particular image and the galaxy’s centroid
in the first image. Shifting the second, third, and fourth images by these
differences would effectively align them with the first image. In practice,
these alignments are done using IRAF’s imshift command.

Image Number x Pos (Pix) y Pos (Pix) x-difference (Pix) y-difference (Pix)

1 366.475 376.860 0 0
2 371.486 379.296 -5.01 -2.43
3 374.011 384.322 -7.54 -7.46
4 369.008 381.885 -2.53 -5.03

Table 1: Pixel centroid position of the lensing galaxy in the four images.
The x-difference and y-difference columns corresponds to the differences of
the centroid positions between the image and the first image.
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The median coaddition of the first image and the shifted second, third,
and fourth images was then done using IRAF’s imcombine utilizing the
comb=median keyword. The mean, median, mode, and standard deviation
of a small empty region (at [125:174, 135:184] can be obtained for our images
using IRAF’s imstat package (utilizing the field keyword). The statistics for
four of our original images, along with their average value, are listed in Ta-
ble 2. The same statistics, this time calculated for the combined image, are
listed in Table 3. Note that the standard deviation of the combined image is
lower by a factor of ∼ 9.5 from the average of the four single images. This
corresponds to the coaddition reducing the sky background noise.

Image Number Mean (ADU) Median (ADU) Mode (ADU) Stddev (ADU)

1 0.02035 0.01934 0.0193 0.0122
mmmm

2 0.02216 0.02178 0.02169 0.0040
3 0.01962 0.01927 0.01949 0.0040
4 0.02273 0.02176 0.02164 0.0072

Average 0.02122 0.02054 0.02053 0.00685

Table 2: Image statistics for the four exposures, taken at a small, empty
region at position [125:174, 135:184].

Image Mean (ADU) Median (ADU) Mode (ADU) Stddev (ADU)

Combined 0.0206 0.02053 0.02027 7.2 × 10−4

Table 3: Image statistics of the median coadded image, taken at a small,
empty region at position [125:174, 135:184]. Note that the standard deviation
drops by ∼ 9.5 from the average of the single images.

Also notable from Table 3 is that although the HST is located above the
atmosphere, therefore exempt to sky background due to light reflecting off
the atmosphere, the median of the empty region is not zero. This means that
our HST data is still polluted by some sky background. Some cause of this
light pollution is the reflection of sunlight by dust in the zodiacal cloud: a
thin, flat, dust cloud located within the solar system. Nevertheless, we would
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need to remove this sky background by subtracting our coadded image by the
median data number of an empty patch of sky. This was achieved by using
IRAF’s imarith to subtract the median listed in Table 3 from our coadded
image. The resulting image is shown in Figure 1 (a). Shown in Figure 1 (b)
is the magnified field of view of WF3.

4 Resulting Image

In Figure 1 (b), E denotes a bright star that we used to get our experimental
point spread function. The FWHM of the star, measured using IRAF’s
radprof package, denotes the angular resolution of the image in the bandpass.
The pixel FWHM obtained for this star is 2.64 pixels. Converting this into
arcseconds using the plate scale (0.1 arcseconds per pixel), we get the angular
resolution of the image to be 0.264 arcseconds. The theoretical best angular
resolution for a telescope is given by ∼

λ
D

where λ denotes the wavelength
observed and D denotes the diameter of the telescope. Plugging in the center
wavelength of our bandpass, 599.7 nm, and the diameter of the HST, 2.4 m,
we get a theoretical best angular resolution of 0.0515 arcseconds. Therefore,
our achieved angular resolution is 5.122 times larger than the theoretical best.
This meant that although the HST is free from atmospheric disturbances,
it still fail to attain the best possible angular resolution. This can be due
to the diffraction of its apperture which worsen its angular resolution by a
geometric factor, or imperfections in the mirror itself.

Besides the Einstein ring system, the field of Figure 1 (b) is also littered
with various other interesting objects. A, B, C, and D, for example, are other
galaxies. If spectras are taken for each of those galaxies, we would be able to
measure their cosmological redshifts. By equation (2), we would then be able
to find their distances from Earth. With this information, it is possible to
figure out if all five galaxies are located close to each other in 3-D space, or if
only their 2-D projections are near each other (since our image only showed
their 2-D projection). We can then discern how many of those galaxies are
gravitationally affecting each other. If we can measure their velocity vectors,
we would then be able to discern if any of them form gravitationally bound
systems. Another interesting note is that galaxy A possess extended features
that looks disturbed. This hints that galactic interactions (such as galactic
collisions) happened to galaxy A in the past. It would be interesting to
observe galaxy A through a different bandpass. If it is the subject of a
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(a)

(b)

Figure 1: (a) Shows the entire field of our WFPC2 SDSSJ0946+1006 dataset
after cosmic ray and sky background rejection. The three large boxes ar-
ranged like an ’L’ are the Three WFC camera field of views. Each of the box
measure 80 arcseconds across. The smaller box at top right corner is the PC
field of view measuring 36.8 arcseconds across. (b) Shows the magnified field
of view of WF3, where our target Einstein ring system resides. The letter
labels A-E denotes other interesting objects in the field.
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galactic collision, for example, perhaps we can see a trail of hot gaseous
matters which leads to the direction the other galaxy went after the collision
if we look at the field through a different wavelength range. Due to the
rarity of lensing events, it would be improbable to find another Einstein ring
system in the field. Looking through the other objects closely confirmed
this. None of the other objects displayed any morphology that bends or
curves the way an Einstein annulus does. In the most cases, objects in the
field possessed morphology that are circular or elliptical. Some of the smaller
dots are actually cosmic rays that survived our cosmic ray rejection method.
This was ascertained by blinking through the four single images in ds9. Many
of the smaller dot features appear in two consequetive images but not in the
rest, a tell tale sign of cosmic rays.

The contour plot of the field surrounding our target Einstein ring system
is shown in Figure 2 (a). The same plot zoomed into our target Einstein
ring system is shown in Figure 2 (b). Notice the large elliptical structure
in Figure 2 (a). This structure, which is not apparent without the contour
lines, are the galaxy isophotes of the fainter, extended region of the galaxy.
In Figure 2 (b), an interesting note is that the isophote of the central portions
of the lensing galaxy rotates as the radius increases. Therefore, it is as if the
lensing galaxy is made of two parts, a central, smaller but brighter part, and
an extended, large but faint part. Using IRAF’s imcntr, we calculated the
centroid position of the lensing galaxy to be [366.475, 376.860]. Furthermore,
using the IRAF package radprof, we were able to calculate the FWHM of
the galactic center to be of 4.98 pixels, or 0.498 arcseconds. Using the same
method, the semimajor axis of the extended part of the galaxy is measured to
be 52.5 pixels, while the semiminor axis is 36 pixels. Multiplying by the plate
scale, these numbers corresponds to 5.25 and 3.6 arcseconds respectively.

5 Galaxy Subtraction

For the purpose of emphasizing the lenses’ structures, we can remove the
lensing galaxy from our coadded image. This removal can be done by first
modelling the galaxy and then subtracting this model galaxy from our coad-
ded image.
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(a)

(b)

Figure 2: (a) Shows the contour plot of the field surrounding
SDSSJ0946+1006 after cosmic ray and sky background rejection. Note the
large elliptical structure that extends further from the directly apparent re-
gion of the galaxy. This fainter portion of the galaxy is due to the galaxy’s
extended regions. (b) Shows the same contour plot as (a) magnified to em-
phasize the central parts of SDSSJ0946+1006. Note the isophote’s twisting
(rotating) as it increases radius.
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5.1 de Vaucouleurs’ Model Galaxy

A simple elliptical galaxy model that we used in modelling the lensing galaxy
was the de Vaucouleurs’ model. The de Vaucouleur profile describes the
surface brightness, I, of an elliptical galaxy as a function of the galactic
radius, R, as5:

lnI(R) = lnI0 − kR1/4 (4)

Where I0 is the surface brightness at the center of the galaxy and k is a
proportionality constant. Defining Re as the radius where half the luminosity
of the galaxy is contained, we can eliminate the proportionality constant k

to write the de Vaucouleur profile as:

lnI(R) = lnIe + 7.67

(

1 −

(

R

Re

)
1

4

)

(5)

As such, a de Vaucouleur elliptical galaxy can be completely specified by
its magnitude, semimajor axis, and axial ratio (semimajor divided by semimi-
nor axis), as well as its position coordinates and position angle describing the
galaxy’s location and rotation placement in the field.

5.2 Galaxy Modelling and Subtraction Method

Our de Vaucouleur galaxy can be modelled using IRAF’s mkobject package.
This package allowed the creation of images based on various theoretical
models. In this case, we used mkobject to construct a de Vaucouleur galaxy
by feeding it a text file containing the centroid position, the magnitude,
the name of the galaxy model, the semimajor axis, the axial ratio, and the
position angle of the model galaxy. To model our galaxy, due to the profile
of the galaxy isophotes described in section 4, we have to superimpose two
de Vaucouleur galaxies. The first component would be a brighter galaxy that
would model the central parts of our lensing galaxy. The second component
would be a fainter galaxy to model the extended portions of our lensing
galaxy. The parameters which goes into building these two galaxies are
given in Table 4. The centroid positions of both galaxy components are the
centroid position of our lensing galaxy [366.475, 376.860].

11



Magnitude Semimajor Axis (Pix) Axial Ratio Position Angle (degrees)

2 20 0.95 5
5 20.2 0.9 80

Table 4: Parameters of the two de Vaucouleur galaxies used to model our
lensing galaxy. The first entry described a brighter galaxy that models the
central portions of our lensing galaxy while the second entry described a
fainter one that models the extended features of our lensing galaxy.

Our model galaxy can then be subtracted from the coadded image using
IRAF’s imarith’s image subtraction. The resulting image of our target Ein-
stein ring system, is shown in Figure 3 (a) while the contour plot is shown
in Figure 3 (b). Note that in Figure 3 (b), the large elliptical contours of
the galaxy’s extended portion is absent. Thus, this model works very well
in the extended part of our lensing galaxy. The black patch at the central
regions of the galaxy, however, indicates that our model had oversubtract on
some center parts of the lensing galaxy. This is because the central portions
of the lensing galaxy was not completely elliptical, while our model for the
center of the galaxy is a perfectly elliptical object. As the ellipse of our model
galaxy thus covers more than the entire galactic center, some parts of the
galaxy center was oversubtracted by our model galaxy. Also note that in
contrast with Figure 2 (b), the upper portion of the inner Einstein ring is
very apparent.

6 High Pass Filtering

Putting an image through a high pass filter would remove low resolution
structures. In effect, broad objects such as the extended morphology of the
lensing galaxy would be deemphasized while smaller details such as stars or
the core of a galaxy would be accentuated. By passing our image through
a high pass filter, we therefore can increase the apparent sharpness of the
image without actually obtaining new data.

In this lab, the high pass filter was made by convolving our coadded image
with a gaussian function using the IRAF package gauss. This convolution
results in a copy of our image that is deliberately blurred, where the extend

5Caroll & Ostlie, 1996: Modern Astrophysics, pg. 928
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(a)

(b)

Figure 3: (a) Shows SDSSJ0946+1006 after we subtracted our model galaxy.
Note that the center galaxy is oversubtracted. This is due to the center
of the galaxy not being a perfect ellipse, while our model for the center of
the galaxy is a perfectly elliptical object. (b) Shows the contour plot of the
galaxy. Note that in contrast to the contour plot before the model galaxy
subtraction, the large elliptical isophotes due to the extended portions of the
galaxy is missing. This shows that our model is a good fit for the extended
regions of the galaxy.

13



of the blurring depends on the standard deviation of the gaussian (increasing
the standard deviation of the gaussian would blur the image more). We then
used IRAF’s imarith to subtract our coadded image with its convolved copy.
As the convolved image is essentially a low pass filter, the subtraction would
cancel the low resolution structures (which are practically unaffected by the
convolution) almost completely while leaving the high detailed structures
intact. The choice of gaussian σ reflects how sharp the resulting high pass
filtered image would be. A larger σ would increase the frequency threshold
that would not pass the filter. As such, choosing a higher σ would amount
to increasing the apparent sharpness of the resulting high pass image. We
chose σ = 5 as a compensation between sharpening the image enough to
remove the extended morphology of the galaxy, while still passing as much
information as possible (since at very high frequency filters, even the rings
would be filtered, changing their shapes significantly). Our target Einstein
ring system after applying high pass filtering of gaussian σ = 5 is depicted
in Figure 4. As seen, the extended structures of the galaxy are removed
and the smaller details (such as the lensing galaxy center and the rings) are
emphasized. In contrast with Figure 2 (b), for example, the upper portion
of the inner Einstein ring is clearly visible.

7 Astrometry

The radial angular separation between the lens galaxy and the rings were
done by plotting a cut of the image using IRAF’s graph package. A vertical
radial cut was made across the Einstein ring system at pixel 368 horizontally
and between pixel 343 to 405 in the vertical direction of the high pass filtered
image (the dotted line in Figure 4).

The resulting radial cut, plotting pixel in the vertical direction versus the
data number is shown in Figure 5. In the figure, the large peak with centroid
at pixel 35.2 ± 1.29 corresponds to the center of the lensing galaxy, where the
uncertainty due to the centroid method is obtained by taking 200 centroid
calculations with different starting position (determined in IDL using the
cursor function) and taking the standard deviation of the results. The two
smaller dips with centroid positions at 21 pixel and at 46.5 corresponds to
the light emissions of the inner ring, while the even less pronounced dip
at pixel 58.5 is due to the outer ring. Since they were all calculated with
the same centroid function, they all carry the same uncertainty of ± 1.29
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Figure 4: SDSSJ0946+1006 after high pass filtering. We convolved our coad-
ded image with a gaussian of sigma=5 and subtract this convolution from the
original image, creating a high-passed image. Note that the central portion
of the galaxy and the rings are accentuated. The dotted lines corresponds
to the cut done to produce a pixel vs. data number plot in the Astrometry
section.
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pixels. The absolute pixel differences between the centroids of the inner ring
emissions and the central galaxy emission are therefore 14.2 ± 1.29 pixels
(to the upper ring) and 11.3 ± 1.29 pixels (to the lower ring). Averaging
these two pixel regress gives the mean pixel annulus of the inner ring to be
12.75 ± 1.29 pixels. Multiplying this number by the plate scale of WF3, 0.1
arcsec/pixel, we get the angular separation of the inner annulus to be 1.275
± 0.129 arcseconds. We can confidently detect only one side of the outer ring
emission, due to it being fainter. The pixel difference between the centroid of
the central galaxy and the centroid of the outer ring emission is 23.3 ± 1.29
pixels. Again, multiplying this number by the plate scale of WF3 gives us
the angular separation of the outer annulus to be 2.33 ± 0.129 arcseconds.

If we are to use, instead of the high pass filter, the model galaxy sub-
tracted image from the previous section, we would gain another method by
which we can calculate the rings’ radial angular separation. Taking a radial
cut of the image at the same location, we would obtain the same centroid
positions for the rings’ emissions. However, we would need a new method
to find the center of our lensing galaxy. Since our model galaxy succeeded
in canceling out the actual galaxy, then the location of the galaxy’s center
should be located at the position we placed the center of the model galaxy
[366.475, 376.860]. The vertical position of our galaxy is therefore 376.860.
This corresponds to pixel number 33.86 in Figure 5 (the image in Figure 5
starts at pixel 343, therefore, the pixel position of the model galaxy in Fig-
ure 5 is pixel number 376.860− 343 = 33.86). The absolute pixel differences
between this new centroid and the two inner ring emission lines visible in
Figure 5 are 12.86 (for the distance to the upper ring) and 12.64 (for the
distance to the lower ring). Since the rings’ emission centroids still carry
the centroid uncertainty, these values have uncertainty of ± 1.29 pixels. The
average of these values again give us the average pixel angular separation of
the inner annulus to be 12.75 ± 1.29 pixels, or multiplying by the plate scale,
1.275 ± 0.129 arcseconds. Doing the same procedure with the single outer
ring centroid give the angular separation of the outer ring to be 24.64 ± 1.29
pixels, or multiplying by the plate scale, 2.464 ± 0.129 arcseconds. The fact
that we get similar answers using both methods means that for the purposes
of this lab, it does not really matter which method were used in subtracting
the lensing galaxy.
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Figure 5: Plot of pixel in the vertical direction versus data number of
SDSSJ0946+1006. This image was made by making a vertical cut across
the Einstein ring system at [368, 343:405] (depicted as the dotted line across
Figure 4) of the high pass filtered image. Note the large peak at 35.2 pixel
due to the center of the lens galaxy, the two smaller peaks at 21 and 46.5 due
to the inner ring, and the even smaller peak at 58.5 due to the outer ring.
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8 Dark Matter Analysis

The redshifts to the lensing galaxy and the inner ring are known to be 0.222
and 0.609 respectively (the outer ring is too faint for redshift measurements).
By the methods of section 2.2, we could use this information, along with the
angular separation of the first ring obtained in the previous section, to solve
for the mass of the lensing galaxy. Using equation (3), and the WMAP value
of H0 (71 (km/sec)/Mpc), we calculated the distance between Earth and the
lensing galaxy to be 835.97 Mpc and the distance between Earth and the
inner ring to be 1870.66 Mpc.

The mass of the galaxy can be solved from equation (2) to be:

M =
θ2

E1
c2(dS1dL)

4G(dS1 − dL)
(6)

The uncertainty of the measurement can be found using the error prop-
agation equation6: for an observable I(F1, F2, ..., FN), the error, δI is given
by:

δI =

√

(

∂I

∂F1

δF1

)2

+ ... +

(

∂I

∂FN
δFN

)2

(7)

Where in this case the equation reduces to:

δM =

√

(

∂M

∂θE1

δθE1

)2

(8)

Where δθE1 is the uncertainty in the angular separation between the first
ring and the center of the lensing galaxy. From equation (6):

∂M

∂θE1

=
2θE1c

2(dS1dL)

4G(dS1 − dL)
(9)

And therefore the error propagation equation reads:

6Taylor: An Introduction to Error Analysis
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δM =

∣

∣

∣

∣

2θE1c
2(dS1dL)

4G(dS1 − dL)

∣

∣

∣

∣

δθE1 (10)

Equation (6) and (10) gives the mass of the lensing galaxy to be 3.0217×
1011

± 6.11 × 1010MJ.
There are two ways to measure the luminosity of the lensing galaxy. The

first is to assume that the entirety of our galactic mass is in the form of
Sun-like stars. As such, the total luminosity of the galaxy, Lg would be given
by:

Lg =
Mg

MJ

× LJ (11)

Where MJ and LJ are the mass and luminosity of the sun, respectively,
and Mg is the mass of the galaxy. In this case the error propagation equation
(7) reduces to:

δLg =
LJ

MJ

× δMg (12)

Equation (11), used along with the error propagation equation (7), gives
the luminosity of the galaxy if the entirety of its mass is in the form of
Sun-like stars to be 3.0217 × 1011

± 6.11 × 1010LJ.
This assumption is innacurate because the lensing galaxy is an elliptical

galaxy, which typically consists of mostly old red stars, while the star is
of a relatively younger yellow G-dwarf star population. Furthermore, this
assumption neglects the fact that the galaxy’s luminosity in this bandpass
can also come in the form of non-stellar masses, such as hot interstellar gases.
The most interesting error of this calculation, however, is that it does not
take into account dark matter, which contributes to the mass but not to the
luminosity of the galaxy.

The second way to measure the luminosity of the lensing galaxy would
be to perform photometry on the lensing galaxy. Due to time constraints,
we were not able to conduct the photometry ourselves. Fortunately, the
apparent magnitude, mg, of the lensing galaxy is known to be 17.78 mag in
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our bandpass (F606W). Using the distance modulus, we can calculate the
absolute magnitude, Mg of the galaxy by7:

Mg = mg − 5log10

(

d

10pc

)

(13)

Where d, the distance to the lensing galaxy, was obtained using the mea-
sured redshift to the galaxy and equation (3) to be 835.97 Mpc. This equation
gives the absolute magnitude of the lensing galaxy in the F606W bandpass
to be -21.830 mag. We can then calculate the luminosity of the galaxy in the
bandpass, Lg, in terms of the Sun’s luminosity, LJ, using the equation:

Mg = MJ

− 2.5log10

(

Lg

LJ

)

(14)

Where the absolute magnitude of the sun, MJ, is known to be 4.76 mag.
Solving for Lg in this equation gives:

Lg = LJ

× 10
MJ

−Mg

2.5 (15)

This gives the luminosity of the lensing galaxy in the bandpass to be
4.329 × 1010LJ. Note that this result is much smaller than if we assume
that the mass of the galaxy consists of entirely Sun-like stars (By a factor
of 6.98). This is due to two factors: the first is that our first luminosity
calculations does not take into account the fact that a large portion of the
galactic mass does not radiate in the same way as the sun (because some of
the luminous matter might be non-stellar objects, such as hot gas, and most
of the stellar objects in the elliptical galaxy would be old, red stars). The
second factor is because most of the mass of the elliptical galaxy is in the
form of non-luminous dark matter.

The mass to light ratio of the lensing galaxy, defined as its mass in solar
mass divided by its luminosity, can be calculated using the luminosity found
using the second method to be 6.98±1.41 where the uncertainty follows from
equation (7). The mass to light ratio gives a picture of the amount of mass
that does not radiate photons (at least within the bandpass). As such, it is

7Caroll & Ostlie, 1996: Modern Astrophysics, pg. 68
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a measure of how much dark matter is in the galaxy. Since our mass to light
ratio is > 1, we can confidently say that we detected the presence of dark
matter in the lensing galaxy. However, we have assumed that all luminous
objects radiates exclusively within the F606W bandpass as our luminosity
is calculated using the magnitude of the lensing galaxy within the F606W
bandpass only. Therefore, any objects that radiates outside the bandpass
would increase our mass to light ratio despite not being dark matter. In par-
ticular, we have overcounted the amount of dark matter by adding luminous
matter that radiates outside our bandpass. This means that our mass to
light ratio is merely an upper limit, if there exist any material in the galaxy
that radiates outside our bandpass, the mass to light ratio would lower. For
example, since stars radiate in a manner very similar to blackbody radiation,
it would radiate a finite amount of energy at every wavelength. Therefore,
some of their luminosity must be radiated outside of the F606W bandpass.

9 Conclusion

Using the Hubble Space Telescope data achieve, we were able to obtain
datasets of the double Einstein ring system SDSSJ0946+1006 and solve for
the angular separation of the inner ring and the lens galaxy. By the tenets of
general relativity, we were able to use this information, along with the known
redshifts and magnitudes of the system to find an upper limit of the mass
to light ratio, 6.98± 1.41. The high value of this mass to light ratio allowed
us to be confident in stating that we have found dark matter in the lensing
galaxy of SDSSJ0946+1006. A concern of this lab is the large uncertainty we
obtained (20% for the mass to light ratio). Most of this uncertainty comes
from the uncertainty of the angular separation due to the centroid function.
Therefore, in analyzing future datasets, it would be beneficial to use a better
method to find the center of an emission line (such as gaussian or polynomial
fitting). Nevertheless, this lab allowed us to observe firsthand the curvature
of spacetime due to massive objects, as well as using this curvature to confirm
the existence of the exotic dark matter.
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10 Appendix: Double Einstein Ring Geome-

try
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