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Equations of condition

Suppose we consider a model to describe a data set (x;, y;) where y = y(x) and the function can
be written in the form
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where f3 is some known function of the independent variable x, and ¢ are constants. How do
we find the constants ¢; given the data?

If the problem can be expressed in this manner it is a linear one, because the dependent variable
is a linear combination of known functions of the independent variable. If we write
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then we can write the problem in matrix form as
y=Ba. 4)

The equations represented by Eq. (4) are known as the equations of condition.

Least squares

The equality in Eq. (4) holds only for data with no measurement errors. We are interested in
finding a when there are errors in y and therefore Eq. (4) is not solved exactly: all we can hope
for is a solution that in some sense is optimal. The method of least squares yields such a
solution.



We can write a compact expression for the sum of the squares of the residuals,
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where the notation Il...II, is used to denote the Euclidian vector norm',
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and the superscript 7 denotes the transpose. Expanding Eq. (5) we find
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We want to minimize this expression as a function of a, so that the first derivatives with respect
to a are zero
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or
B'Ba=B"y. ©)
Thus, the unknown vector a is found by multiplying each side by the inverse matrix (B'B)’!

(B'B) 'B'Ba=(B'B) B’y
a=(B'B) By. 1o

The quantity (B'B)" is known as the generalized or Moore-Penrose pseudo-inverse of B.
Sophisticated versions of general least squares methods use singular value decomposition to
compute the inverse of B'B.

"In two or three dimensions the Euclidian vector norm is just the magnitude (length) of the
vector (think Pythagoras’ theorem).



An simple example: uniform acceleration from rest
Suppose we have a set of data described by a parabolic relation

xX=—gt",
28

e.g., the distance traveled by a body dropped from rest. How do we find the value of g? Some
data are shown in Figure 1.
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Figure 1: Measurement of the position of a body falling from rest under gravity with g =
9.81 m s, The dotted line shows the fit that you get if you fit a general quadratic.

If the data vectors are t and x, in IDL the solution is implemented as follows:

b = transpose([0.5*t"2])

y = transpose(Xx)

psi = invert( transpose(b) ## Db)
ans = psi ## transpose( b) ## y

Note that the transpose function in the first two steps is to convert the row vectors into
column vectors. In IDL the matrix multiplication operator is ##.

The conventional (but wrong) approach would be to fit a second order polynomial to the data:

res = poly fit(t,x,2)



In the example in Figure 1, the parabolic fit gives g = 9.93 m s, whereas the polynomial fit
implies that the initial position is -0.29 m, the initial velocity is 1.81 m s and the acceleration
is 6.18 m s”. Polynomial fitting fails to take account of our knowledge that the initial position
and velocity are zero, and as a consequence gives an inaccurate value for the acceleration.

Example: Circular motion

Now suppose our task is to determine the radius of a wheel by measuring the x-coordinate of a
point on the circumference as the wheel rotates at a known frequency @. The position of that
point is given by

x=x,+ Rsin(ot).

From measurements of (7, x) we want to find x, and R. For this example, the relevant fragment
of IDL code is

b transpose([[replicate(l.,npts)],[sin(omega*t)]])
y transpose(x)

psi = invert( transpose(b) ## Db)

ans = psi ## transpose( b) ## y

An example of such a fit is shown in Figure 2.
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Figure 2: Time series of measurement of a point on the circumference of a wheel rotating
at known angular frequency . A linear least squares fit to x = x,, + Rsin(ax) yields the
radius and the x-coordinate of the point of rotation.

Note the limitation of this method —we cannot determine @ from the data; we have to know the
rotation rate. Problems where unknowns enter other than in linear combinations fall into the
category of non-linear least squares. There are no closed-form solutions to non-linear



problems: they are solved using iterative methods that require an initial guess for the model
parameters.

At first sight some problems appear non-linear, e.g., the case of the rotating wheel when the
phase, ¢, is unknown

x = x, + Rsin(wt + ¢) .
However, by use of trigonometric identities we can write
x = x, + Rcos(¢)sin(er) + Rsin(¢)cos(ar),

which is a linear problem.



