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The purpose of this lab is to experimentally investigate digital sampling, digital Fourier trans-

forms, and mixers. Mixers are the basis of heterodyne spectroscopy. Heterodyne spectroscopy, in

turn, is what you use every day that you listen to a radio, use a cell phone, or watch TV—or do

radio astronomy.

Most heterodyne applications use the more common double-sideband (DSB) mixer, for which

the upper and lower sidebands produce identical mixer output. Here we also explore single-sideband

(SSB) mixers, which display the remarkable property that upper and lower sidebands produce

outputs at negative and positive baseband frequencies, respectively. In real life, SSB mixers allow

such things as the transmission and reception of stereo FM signals; in olden days, FM transmission

were all monophonic. In some years, we have a lab segment in which we use an SSB mixer for our

first measurements of the 21-cm line of interstellar atomic hydrogen (HI).

In his lab, you will be performing several experiments, analyzing the data and generating a

number of different data files. You will need to keep careful notes in your lab notebook! Or,

pay the penalty, and forget what you did, do things twice, and be completely disorganized. Your

choice!

1. GOALS

• Learn how to sample electronic signals—here, one or more sine waves—digitally using our

computers.



– 3 –

• Become acquainted with the basic law of sampling: the Nyquist criterion.

• Learn how to use Digital Fourier Transforms (or Discrete Fourier Transform; DFT) to deter-

mine the frequency spectrum of a signal.

• Learn about the Fast Fourier Transform (FFT) as a particular, and particularly fast, imple-

mentation of the DFT.

• Learn the basics of mixing for frequency conversion (that’s the heterodyne technique) and for

measuring phase.

• Construct a two-output mixer, composed of two mixers, that can be operated as either a DSB

or an SSB mixer.

• Use the two-output mixer in DSB and SSB modes and understand the difference.

• Learn how complex inputs to a FT break the negative/positive frequency degeneracy.

• Get started with our programming language, IDL, using it for the mathematical analysis,

signal processing, and making nice plots.

• Learn enough Latex to write up your results in a formal lab report, including nice plots and

graphs.

2. SCHEDULE

There’s a lot to do in this lab! If you don’t understand the Nyquist criterion by the end of the

first week, you’re behind. Here’s how it should be:

1. The First Week: Finish §3, §4, §5 below. Be prepared to show your results to the class,

making real-time plots in IDL.

2. The Second Week: Finish §6, §7, and §8 below. Again, be prepared to show your results to

the class.

3. The Third Week: Write your formal report! It should follow the standard format, consisting

of an introduction, discussion of experimental activities and results, description of the analysis

technique, presentation of analysis results, and discussion/interpretation. With all this, you

should hand in a reasonable number of plots together with commentary to illustrate your

work, your thought processes, and your conclusions.
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3. NYQUIST SAMPLING AND ALIASING: A SINGLE SINE WAVE (First

Week)

Here we explore the all-important realms of the Nyquist criterion and aliasing in digital sam-

pling. Clearly, if you sample too slowly the signal won’t be well-reproduced. But if you sample

really fast, then you generate large data files that take a long time to process. Just how slowly can

you sample the signal without completely losing its basic properties (such as, for example, the fact

that it oscillates with frequency νsig)?

The fundamental parameter here is the ratio of sampling frequency νsmpl to signal frequency

νsig. With our equipment we can set νsmpl to only selected, quantized values. However, we can

set νsig with almost arbitrarily high precision. So to explore these issues we will pick a sampling

frequency νsmpl and take data at several signal frequencies νsig. Be sure to use a coax T so that

you can look at the sampled signal on the oscilloscope. Set the peak-to-peak voltage appropriately

so that it doesn’t saturate the Analog-to-Digital Converter (known as the ADC).

3.1. Your First Digital Sampling

We want to explore sampling rate issues, so to that end we will begin by. . .

1. Pick a convenient sampling frequency νsmpl.

2. Set the synthesizer to frequency νsig = (0.1, 0.2, 0.3, . . . , 0.9)νsmpl and take data.

Take N contiguous samples with N an integral power of 2, say N = 256. Throughout the datatak-

ing, you should always be monitoring the signal with the oscilloscope. These are sine waves, so

it’s easy to measure the period by looking at the oscilloscope; each time you digitally sample the

signal, you should write down the period (maybe in your lab notebook?).

For each dataset, use IDL to plot the digitally sampled waveform versus time. In particular,

make the digital plot informative, meaning that you can clearly see the signal shape; if necessary,

plot only a part of the data so you can clearly see the signal shape (e.g., a few cycles of the sine

wave); compare this with the oscilloscope trace. Also, for all the datasets derive and plot the Fourier

power spectrum. Make sure that you label the axes with proper values of time and frequency—and

choose convenient units, such as microsec and megaHz, to avoid huge and tiny numbers. In deriving

the Fourier spectra, use our homegrown DFT procedure (see §4 below).

Now, look at both sets of these plots and note any funny business. Think about your results

and draw your own conclusion: just what is the minimum sampling rate that you can get away

with? (That’s Nyquist’s criterion).
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3.2. Let’s Go to Extremes. . .

By now you might have an idea of what’s going on. Test yourself: try the following two

experiments. But before analyzing the results, predict to yourself what they will look like. How?

Use good old-fashioned paper and pencil to make some diagrams. If you can successfully predict

the following, then you really understand the Nyquist criterion! So here we go:

1. Repeat the above for νsig = νsmpl.

2. Now make
νsig
νsmpl

really large! In other words, blatantly violate Nyquist’s criterion! Our

oscillators won’t run faster than 30 MHz, so to accomplish this you’ll have to use not only a

large νsig but also change νsmpl to be very slow. Use as large as a ratio as you can, but make

sure that the ratio is not an integral or half-integral number. Take lots of samples. Look at

the sampled waveform. What do you get? Why?

3.3. For your Lab Report

In your report, select a well-considered set of plots to illustrate what you’ve learned, and compose

a well-written commentary that convinces me that you really understand what’s going on. Also

clearly state what you have concluded regarding Nyquist’s criterion.

With your plots, you can save paper by fitting multiple plots on a page by using IDL’s

!p.multi system variable; for example, if you wanted 4 plots running vertically down the page

you’d set !p.multi=[0,1,4]; if you wanted two columns of 4 plots down the page, you’d set

!p.multi=[0,2,4]. To get back to one plot per page, set !p.multi=0.

4. ON USING DFT AND FFT TO CALCULATE A POWER SPECTRUM (First

Week)

4.1. The Analytic Fourier Transform

The input to the Fourier transform is voltage versus time, say E(t); the output is voltage

versus frequency, say E(ν). The Fourier transform is the integral

E(ν) =
1

T

∫ T/2

−T/2
E(t)e2πjνtdt . (1)

The input voltage is real; it is multiplied by the complex exponential and integrated, so the output

is complex. Of particular importance is that he Fourier Transform is invertible: you can go from

the time to the frequency domain, and from the frequency domain you can get back to the time

domain using the inverse transform
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E(t) =
1

F

∫ F/2

−F/2
E(ν)e−2πjνtdt . (2)

Note: If you’re paying attention, you would wonder how F and T are defined above. In the proper

analytic formulation, they are both infinity. We emphasize their boundedness here because, in

practice, i.e. when you do numerical calculations, neither can be infinity!

4.2. The Discrete Fourier Transform (DFT)

Our voltage versus time is not continuous, but rather it is discrete samples. With the digital

transform, the integral becomes a sum. In this sum, you need to specify:

1. The set of sample times. I strongly suggest:

(a) Using N samples, where N is even (and even better: a power of 2).

(b) Use the center channel as the zero point. With N even, there is no center channel, so

make the times run from −N
2 /νsmpl to (N2 − 1)/νsmpl.

2. The output is a function of frequency, so you have to specify the frequencies for which you

want the output E(ν). I strongly suggest that, at first, you calculate the the output for

N frequencies running from −νsmpl

2 to +
νsmpl

2

(
1− 2

N

)
. This makes the frequency increment

equal to ∆ν = νsmpl/N . Thus, you calculate a voltage spectrum running from −νsmpl

2 to about
νsmpl

2 using our in-house DFT procedure. To find out how to use DFT, use the doc library

or doc function; in IDL, type: doc, ’dft’.

Later on, if you are intellectually daring and curious, try doubling or tripling the frequency

range, keeping the separation ∆ν the same (i.e., by increasing the number of output frequen-

cies to 2N or 3N).

We are interested in the output power spectrum, say P (ν). Power is voltage squared. For

complex quantities, the squaring operation means we want the sum of the squares of the real and

imaginary parts. We obtain this by multiplying the voltage by its complex conjugate,

P (ν) = E(ν)E(ν)∗ . (3)

In IDL, there are two ways to get this product. One is to use the conj function, i.e. PF = EF *

conj(EF). Should the imaginary part of PF be zero? (answer: yes! Why is this?) Is it? (answer:

no! Why not?) To get rid of this annoying and extraneous imaginary part, you can use the float

function: PF = float(PF).

The other (more convenient and suggested) way is to square the length of the complex vector,

i.e. PF = (abs(EF))^2. The result is automatically real.
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4.3. OPTIONAL: The Fast Fourier Transform (FFT)

Above in §4.2, you had N time samples and evaluated the DFT for N well-chosen frequencies.

These were “well-chosen” because for these particular values of frequency—and only these particular

values—you can get back to the time domain by using the inverse transform (in IDL using dft,

you accomplish this by setting the inverse keyword). If you have the time and energy, try this

and make it work!

It so happens that, for these particular combinations of frequency and time, there is a very

fast algorithmic implementation called the Fast Fourier Transform, the FFT. What do we mean by

“Fast”? Well, normally when you do a DFT, you have N input numbers and N output numbers

and the number of calculations ∝ N2. When N gets large, this takes a long time to calculate! For

the FFT, on the contrary, the number of calculations ∝ N ln2(N), and this makes it possible to do

large-N transforms.

If you have the time and energy, try IDL’s FFT and compare it to your DFT calculation above.

The FFT output is ordered in what you might think is a funny and awkward way; however, it’s

really not awkward for most applications. See our “DFT’s with DFT’s” handout for details.

5. LEAKAGE POWER AND FREQUENCY RESOLUTION (First Week)

5.1. Leakage Power

Above, you calculated a power spectrum for each input signal at N distinct frequencies sepa-

rated by ∆ν = νsmpl/N . In each, you found a spike corresponding to the input signal’s frequency.

Here, focus on just one of the properly-sampled signals νsig. Calculate the power spectrum for

many more than N output frequencies over the Nyquist range
[
−νsmpl

2 to +
νsmpl

2

(
1− 2

N

)]
; i.e.,

make the frequency increment much smaller than ∆ν = νsmpl/N . Making the output frequencies

closer together gives a more nearly continuous frequency coverage in the plot of the output spec-

trum. Turn up the vertical scale a lot to see if there is any nonzero power at frequencies other than

νsig. You do see such power! This is Spectral Leakage. It affects all power spectra calculated using

Fourier techniques.

Can you understand what’s going on from a mathematical viewpoint?

5.2. Frequency Resolution

If you had two sharp spectral lines, how closely spaced in frequency could they be and still

resolve them? Roughly, this is just the apparent width of the line when plotted against frequency.

Look at the width of the line for your plot of §5 above. Compare this width to 1
T , where T is the

total time span over which the samples were taken. If you have the inclination, try taking other
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time series with varying number of samples (and thus, varying T ) and confirm any relationship

between line width (that is, frequency resolution) and T .

Can you understand this from a mathematical viewpoint?

6. BASIC DOUBLE SIDEBAND (DSB) MIXER OPERATION: UPPER AND

LOWER SIDEBANDS (Second Week)

For this, use two SRS synthesizer oscillators as inputs to a mixer to explore the spectra and

waveforms in the DSB mixing process. The SRS synthesizers work up to 30 MHz. Assign one of the

SRS synthesizers to be your “local oscillator” (lo) with frequency νlo, and the other your “signal”

with frequencies νsig = νlo ± δν. Here, you choose the frequency difference δν and you set the two

synthesizers, one to the lo frequency and the other to the signal frequency. There are two cases for

the signal frequency, νsig = νlo + δν and νsig = νlo− δν. Make δν somewhat small compared to νlo,

maybe 5% of νlo. For the input power level, a good choice is 0 dbm1 for both synthesizers.

We will want to digitally sample the mixer output and explore both the sum and difference

frequencies. As you learned in the Fourier lab, there are extremely important issues regarding

sampling rate. The most basic is the Nyquist criterion. For this lab, we also want enough samples

per period to give you a reasonable facsimile of the sine wave when you plot it; from this standpoint,

it’s not unreasonable to sample at twice Nyquist, or even faster. Another issue is the number of

points you sample, which must be large enough to give you at least a few periods of the slowest

sine wave.

From what you know about mixers, what is the fastest sine wave in the output? This, combined

with our above comment and the upper limit on our sampling frequency (20 MHz for single channel,

10 MHz for dual channel), would determine the upper limit on νlo.

6.1. The Mixer

Combine the two signals, νlo and νsig, in a mixer for the two values of νsig. For the mixer

use a Mini-Circuits ZAD-1, which has three BNC connectors (three ports) and works well at these

frequencies. The ZAD-1, like nearly all mixers, has its ports labeled “R” (the “RF” or “signal”);

“L” (the “local oscillator”); and “X” (the “mixing product”) or “I” (the “intermediate frequency”).

However, as we explain below, these labels are misnomers. They are based on the usual use for a

mixer, which is to take two high frequency signals as the inputs to the R and L ports and produce

a low frequency difference frequency as the output at the I port.

1What does this “dbm” mean? It’s the power relative to 1 milliwatt, expressed in decibels (db). For our system

the cable impedance is 50 ohms; what’s the rms voltage for a signal with power level 0 dbm?
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The ZAD-1 is a balanced mixer, so the “R” and “L“ ports are identical, and in particular will

not couple to DC or very low frequencies. In contrast, the “I” port is coupled differently and will

handle voltages all the way down to, and including, DC. The mixing process functions no matter

which two ports are used as inputs. For example, if you are using a mixer to modulate a high

frequency (say, a few MHz) with a low frequency (say, a few kHz), you should use the “I” port

for the low frequency and either of the other two for the high frequency; take the output from the

third port.

We will want to look at the output, which consists of both the sum and difference frequencies,

so choose the ports appropriately. Digitally sample the mixer output for both cases (νsig = νlo±δν).

6.2. For Your Lab Report

For the two cases, plot the power spectra versus frequency. Explain why the plots look the

way they do. In your explanation include the terms “upper sideband” and “lower sideband”.

For one of the cases, plot the waveform. Does it look like the oscilloscope trace? Also, take

the Fourier transform (not the power spectrum) of the waveform and remove the sum frequency

component by zeroing both the real and imaginary portions (this is “Fourier filtering”). Recreate

the signal from the filtered transform by taking the inverse transform; see §6.3 to see how this is

done. Plot the filtered signal versus time. Explain what you see.

6.3. On Fourier Filtering (OPTIONAL!!)

When you use DFT to go from the time to the frequency domain, you specify the times and the

sampled voltages as input and calculate the output for a well-chosen set of frequencies. These times

and frequencies should be symmetric around zero, as we strongly suggested above in §4. To filter

out the high-frequency mixed signal, you have to zero both the real and imaginary high-frequency

components, and you must zero both the negative and positive frequencies. In frequency space,

these zeroed values must be symmetric.

To go back from the frequency domain to the time domain, use the filtered frequency Fourier

components (which are complex) and their associated frequencies as inputs and calculate the output

for the original times. You should also set the inverse keyword in DFT, which keeps the amplitude

scale correct (check the documentation for DFT using doc library or doc). The output will be

a time series, and because you’ve eliminated the sum frequency component, the only thing that

remains should be the difference frequency component.

One more thing. The output of the inverse transform had better be real—after all, your

original input was real! You’d better check this! If it isn’t real, then either (1) you didn’t treat

the negative and positive frequencies symmetrically when you zeroed the signal, or (2) you didn’t



– 10 –

use our suggested input times and output frequencies. If you’re having trouble, check your basic

technique by doing the inverse transform on the non-filtered Fourier components; you should recover

the original time samples.

7. DSB MIXER AS A PHASE DETECTOR (Second Week)

Use a mixer as a phase detector by setting the two synthesizers to the same frequency, i.e.

setting δν = 0. Look at the mixer output on the oscilloscope. Vary the phase of one of the

synthesizers. What happens to the mixer output as shown on the oscilloscope trace? What’s going

on here?

Now measure the mixer output with the HP rack-mounted digital meter in its d.c. mode,

reading it with the computer. The d.c. mode is akin to a low pass filter because the sum frequency,

which is a fast sine wave, contains no d.c. Generate a file that contains both the phase and the d.c.

voltage and plot (to hand in!) the result. If you’re clever, you can write an IDL script to take the

data automatically. How does this correspond to the interferometer fringe?

Now displace one of the synthesizer frequencies by some small amount—say, 1 Hz. What

happens to the output? This should remind you of the interferometer fringe. . .

For your lab report, hand in appropriate plots and discussion.

8. CONSTRUCT AND INVESTIGATE A TWO-OUTPUT MIXER USABLE

FOR DSB OR SSB (Second Week)

From the block diagram in Figure 1, construct a “Computer Voodoo” SSB mixer that achieves

the phase delay with a cable instead of a quadrature hybrid. We will use it to experiment with no

phase delay (a short cable) and a 90-degree phase delay (a long cable).

For experimentation with this two-output mixer, use two SRS synthesizer oscillators as inputs.

The SRS synthesizers work up to 30 MHz. Assign one of the SRS synthesizers to be your “local

oscillator” with frequency flo, and the other your “signal” with frequencies fsig = flo ± |δf |. To

prevent aliasing and to filter out the sum frequency, we will use the 5-MHz low-pass filters, one

on each output of the two-output mixer. Thus, we will want |δf | < 5 MHz. Moreover, remember

the Nyquist criterion: we want to see mixing products up to at least 5 MHz, so you’ll need to

sample. . . at least how often?

The computer’s ADC samples the two outputs simultaneously. We use the two outputs as

inputs to the DFT—one as the real, the other as the imaginary input.
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Fig. 1.— Block diagram of the all-hardware and hardware/software combination SSB mixer. In

the lab, we’ll replace the upper quadrature hybrid with a λ
4 length of cable.

8.1. The DSB Mixer

First see what happens when the phase delay cable is short, so that the two outputs have no

relative phase delay. Pick a value for |δf | and take time series data for the two corresponding values

of fsig (these are the upper and lower sidebands). Calculate the power spectra. When taking the

Fourier transform, be sure to make the inputs complex—you have two simultaneous samples, one

real and one imaginary. Looking at the power spectra alone, can you distinguish between positive

and negative δf?

8.2. The SSB Mixer

Now see what happens when the phase delay cable introduces a relative phase delay of 90◦

between the l.o. signals going to the two mixers. Repeat what you did above in §8.1. Looking at

the power spectra alone, can you distinguish between positive and negative δf?

If you have the time and inclination, verify that the phase difference between the two mixer

outputs behaves as shown in Figure 5. Why does it behave this way? (Look at equations 7 and 8

in §11.4.)
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9. SOME COMMENTARY

Mixers are important because they allow us to shift the frequency of the whole input spectrum

by a uniform amount. They do this by multiplying the input signal by the “local oscillator” (l.o.)

with frequency νlo; this shifts the frequencies by νlo. In radio reception, this is very important

because nearly always our detectors work best in a fixed frequency range, but our signals come in

at many different frequencies. For example, for an AM station playing rock music, the ultimate

detector is our ear, which works only at audio frequencies; however, the AM stations transmit at

much higher frequency, nearly 1 MHz. A mixer is used to shift the frequencies of the AM station

down to the audio region. Such receivers are called heterodyne receivers, and this principle is used

universally not only in consumer radios, TV’s, and cellphones but also in many other applications

including radio astronomy.

For example, later in the course we have the 21-cm line at 1420.4 MHz and use an l.o. at

1270.4 MHz, the difference frequency is 150.0 MHz and the sum frequency is 2690.8 MHz. We use

a low-pass filter to obliterate the sum frequency, so we are left with a replica of the 21-cm line that

is centered at 150.0 MHz instead of 1420.4 MHz. If the Doppler shift from the Earth’s orbit (for

example) shifts the 21-cm line from 1420.4 to 1420.0 MHz, we change the l.o. frequency to 1270.0

MHz so that the line remains centered at 150 MHz. In this way, our spectrometer can always work

at the same frequency, 150 MHz.

Mixers are crucially central to the important radioastronomical technique called interferometry.

In this technique, two widely-separated telescopes point at the same source. Usually, the radio

source is further from one telescope than the other, which produces a phase difference φ between

the signals from the two dishes. The two received signals from the source are combined in a mixer,

which produces a d.c. voltage that is proportional to sinφ. The phase difference changes with

time, which leads to d.c. voltage proportional to sin 2πffringet, where ffringe is the local fringe

fringe frequency and is equal to dφ
dt . You can also think of of this sinusoidal phase resulting from

the differing velocities ∆v of the two telescopes with respect to the source, with ffringe being the

Doppler shift, equal to the observing frequency times ∆v
c .

10. SOME THEORY: THE ORDINARY DOUBLE SIDEBAND (DSB) MIXER

We now turn to the basic theory of the ordinary DSB mixer, which is very straightforward. An

ideal mixer multiplies the two input signals together; this multiplication makes the output signal

have the sum and difference frequencies. Usually, one of these is eliminated by using a filter.

Suppose for simplicity that the mixer is ideal and that the two input signals are the following:

(1) the “local oscillator” with voltage equal to unity (for convenience) and frequency ω0; and (2)

two “signals” with voltage Es and frequencies ωs− = (ω0− |δω|) and ωs+ = (ω0 + |δω|). We handle
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the two signal case simultaneously by writing ωs± = (ω0 ± |δω|).2

The mixer outputs in the two cases are MO− and MO+; similarly, we write MO±. MO is

the product of the signal and l.o. signals, and can be expressed in terms of the sum and difference

frequencies by the usual trig identity

MO± = Es cos[ωs±t] cos[ω0t]︸ ︷︷ ︸
product

=
Es
2

(cos[(ωs± − ω0)t]︸ ︷︷ ︸
diff

+ cos[(ωs± + ω0)t])︸ ︷︷ ︸
sum

(4a)

Replacing ωs± by ω0 ± |δω|, we get

MO± = Es cos[(ω0 ± |δω|)t]× cos[ω0t]︸ ︷︷ ︸
product

=
Es
2

(cos[±|δω|t]︸ ︷︷ ︸
diff

+ cos[(2ω0 ± |δω|)t]︸ ︷︷ ︸
sum

) . (4b)

Thus, the signal frequency has been shifted to two frequencies by an amount equal to the l.o.

frequency: downward in the first term (to δω, the difference frequency) and upward in the second

term (to 2ω0 ± |δω|, the sum frequency). The output contains both the difference and the sum

frequency terms.

Now we insert a low pass filter to eliminate the sum term. We do this because we are observing

at some very high frequency, say the 21-cm line at 1.4 GHz, and need to convert to much lower

frequencies where our backend equipment works. (In the TV case it’s the same: the signals are at

hundreds of MHz and the picture processing circuitry operates below 10 MHz). This low-pass filter

removes the second term.

So with the low-pass filter we drop the sum frequency term. This leaves the following, in which

we add the subscript cos to indicate that we began with the signal represented by a cosine:

MOcos,± =
Es
2

cos[±|δω|t] =
Es
2

cos[|δω|t] . (5a)

If we had begun by representing the signal with a sine instead of a cosine (while retaining the cosine

for the l.o.) we would have obtained

MOsin,± =
Es
2

sin[±|δω|t] = ±Es
2

sin[|δω|t] . (5b)

Four things are important here:

2In real life, e.g. a radio station, the “signal” is speech or music with a broad range of δf . In astronomical life, e.g.

the 21-cm line, the “signal” is a Doppler broadened line, which again has a broad range of δf . The system is linear,

so signals add without mutual interaction, so the discussion for a single δf also applies to these broad spectra.
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RF Spectrum
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Fig. 2.— Upper and lower sidebands in DSB and SSB mixers for a set of δ-function test signals

on top of broad level noise spectra. Top: the RF spectrum. The next two show the USB and

LSB individually when they undergo the DSB mixing process; panel 4 shows how they both add

together. The bottom panel shows the SSB mixer, which keeps them separate.
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1. The two sidebands—the two different input frequencies ([ωs− = ω0−δω] and [ωs+ = ω0+δω])—

produce the same symmetric-around-zero pair of final output frequency ±|δω|. The DSB mixer

cannot distinguish between the two input frequencies.

2. Consider how |δω| depends on ω0: for the upper sideband, d|δω|
dω0

= 1, while for the lower

d |δω|dω0
= −1. We hope that Figure 2 elucidates the situation.

3. A value of Es for one sideband produces a certain mixer output power; the same value of Es
for the other sideband produces the same power. With regard to power, the sidebands are

identical.

4. But the sidebands are not completely identical; we will discuss this in detail later in the

course. The sine term changes changes sign for the lower sideband. Consider representing

the output voltage in the complex plane. For the upper sideband, which has identical signs

for the (cosine, sine) term, the vector rotates counterclockwise. For the lower sideband, it

rotates clockwise. Later, this distinction will allow us to construct a single-sideband mixer,

which provides two outputs, one for each sideband.

Figure 2 illustrates these mathematical results. The top panel shows the original RF spectrum.

The second panel shows the USB after DSB mixing: it appears at negative and positive frequencies

and the spectrum is symmetric, meaning that the negative frequencies give exactly the same result

as the positive ones. The third panel shows the same for the LSB. You can achieve the rejection

of either the LSB or the USB by using an appropriate bandpass filter. The fourth panel shows

what happens without a bandpass filter: the LSB and USB are inextricably mixed and you get the

sum of the power spectra. The bottom panel shows that SSB (Single Sideband) mixing retains the

sideband separation and identity.

11. MORE THEORY: THE SSB MIXER

The SSB mixer has the capability of distinguishing whether the difference frequency |δf | is

positive or negative—that is, it distinguishes between the two sidebands. The sidebands can, and

usually do, contain completely independent signals.

11.1. A Preliminary: The Quadrature Hybrid

The heart of a SSB mixer is not the mixer. Rather, it’s the quadrature hybrid. So before

considering SSB mixers, we need to understand hybrids and quadrature hybrids3.

3For an excellent and thorough discussion of hybrids and their applications, refer to: Hagen, Jon B., “Radio-

Frequency Electronics, Circuits and Applications,” Cambridge University Press, 1996, pg. 188-200.
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Fig. 3.— Block diagram of a four port hybrid. Fig. 4.— Block diagram of a quadrature hy-

brid.

Figure 3 shows the block diagram of a hybrid. The signal acts just like the diagram shows: a

signal entering port 1 will split into equal signals (–3 dB each) and exit through ports 2 and 3. No

power is transmitted across the hybrid to port 4. Internally, many hybrids look like center-tapped

transformers; see Hagen’s book.

Power is split between the two adjacent ports and nothing is transmitted across it. In this way

we think of a hybrid as a power splitter. In fact, this is just what power splitters are: a hybrid with

the fourth port terminated in a matched load. If you are wondering if it can be used in reverse as

a power combiner, the answer is yes. If inputs are made to ports 1 and 4, the sum of the inputs

exit through ports 2 and 3. One point: all ports must present matched loads. By symmetry, ports

2 and 3 each get half the power, so if one of these is terminated then half the power is lost4.

Hybrids can be made so that they add a phase angle, either 90◦ symmetrically in two legs

or 180◦ in one leg. Figure 4 shows a block diagram. A signal incident on port 1 splits and exits

through ports 2 and 3, but each signal is shifted by the number of degrees specified in each corner

of the schematic: the output of port 2 is shifted by 90 degrees with respect to the input while the

output of port 3 is not shifted at all.

11.2. The SSB mixer: block diagram and graphical description

Figure 1 shows a block diagram of the SSB mixer. The RF input is split by a power splitter

into two equal channels. The LO is split by a hybrid, so that the left hand side (LHS) leads the

4Unless the combining signals are identical with a particular phase relationship, in which case all of the power can

go to the unterminated port.
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RHS by 90◦. These two channels are recombined with the second quadrature hybrid.

Suppose that the signal “RF in” is a cosine wave in the lower sideband, with frequency below

the l.o. frequency. The l.o. is a cosine wave on the RHS and a sine wave on the LHS (because of

the 90◦ shift). This makes the two mixer outputs ∝ sin[δωt] and cos[δωt] for the LHS and RHS,

respectively. These are shown in Figure 5, with the LHS side [MO(LHS)] dashed and the RHS

[MO(RHS)] solid. These are identical in amplitude: they have to be, because they come from the

same original lower-sideband signal. But they are shifted in phase: for “RF in” being in the lower

sideband, the dashed curve (the left-hand mixer) lags behind the solid one (the right-hand mixer).

Now suppose “RF in” is a cosine wave in the upper sideband, with frequency above the l.o.

frequency. Now the situation is reversed: the dashed curve (the left-hand mixer) leads the solid

one (the right-hand mixer).

MIXER OUTPUTS FOR USB
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MIXER OUTPUTS FOR LSB
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Fig. 5.— Outputs of the first mixers for the two sideband cases. Dashed curve shows the left-hand

mixer, solid is the right-hand mixer. Left panel shows “RF in” being in the upper sideband (USB);

right panel shows it being in the lower sideband (LSB).

11.3. The Digital “Computer Voodoo” Method

In Figure 1, we can regard the two independent signals marked “To ADC for Computer

Voodoo”, as as the real and imaginary components of the signal because, no matter what the

input frequency, they differ in phase by 90◦. So the signal is a complex number. With an or-

dinary DSB mixer the signal is a real number, so its Fourier transform must have Hermitian

symmetry—meaning that the power spectrum is symmetric, with negative and positive frequencies
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being identical. Here, the signal is a complex number, and there is no symmetry. We won’t delve

into the math here, but the net result is that the Fourier transform keeps the negative and positive

frequency components completely separate. Real geeks call this method “QU sampling”.

11.4. Mathematical description

First, we mix the incoming signal with the real and imaginary (cosine and sine) components

of the l.o. As in the DSB mixer, we use a low pass filter so we need consider only the difference

frequencies. For the left hand side (LHS) the l.o. has the 90◦ phase difference so it’s a sin instead

of a cos and for the Left-Hand Mixer Output [MO(LHS)] we have

MO(LHS)± =
Es
2

sin[±|δω|t] . (6)

Note the – and + subscript on MO(LHS): these refer to “RF in” being in the lower and upper

sidebands (LSB and USB), respectively.

For the LSB input we have

MO(LHS)− =
Es
2

sin[−|δω|t] = −Es
2

sin[|δω|t] (7a)

MO(RHS)− =
Es
2

cos[−|δω|t] =
Es
2

cos[|δω|t] (7b)

Similarly, for the USB input we have

MO(LHS)+ =
Es
2

sin[+|δω|t] =
Es
2

sin[|δω|t] (8a)

MO(RHS)+ =
Es
2

cos[+|δω|t] =
Es
2

cos[|δω|t] (8b)

The RHS and LHS outputs have identical frequencies and amplitudes for the LSB and USB inputs.

But the phase relationships differ for the two sidebands. For the lower sideband, the RHS

output lags the LHS by 90◦; for the upper sideband, the RHS output leads the LHS by 90◦, just

as in Figure 5. In other words, for the LHS output, lower-sideband signals differ in sign from

upper-sideband ones; this is equivalent to differing in phase by 180◦.

When we sample these two mixers simultaneously, and use one mixer as the real input to the

DFT and the other as the imaginary input, the output frequency spectrum separates the sidebands.

That’s why this is known as a Single-Sideband Mixer, or Sideband-Separating Mixer—a SSB.
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To see this, use equation 1, writing δω instead of 2πν. For the LSB in equations 7, the two

mixer outputs are Es
2 sin(−|δω|t) and Es

2 cos(−|δω|t); using these as the imaginary and real inputs

to the Fourier transform of equation 1 and applying the trig identities, the integrand becomes

integrand =
Es
2

(cos[(δω + ω)t] + j sin[(δω + ω)t]) . (9)

For large T in equation 1, the integrand is nonzero only when [(δω + ω)t] = 0. For the LSB with

negative δω, the integral is nonzero only for positive ω.


