Astronomical Coordinates & Telescopes James Graham 10/7/2009

Observing Basics

- Astronomical coordinates
- The telescope
- The infrared camera

Astronomical Coordinates

- Celestial sphere
 - Stars and other astronomical objects occupy three dimensional space
 - Since they are at great distances from the earth, it is convenient to describe their location as the projection of their position onto a sphere which is centered at the observer

Observer's Coordinates

- Coordinates of P relative to observer O
- *Altitude* (a) is the angle AOP
 - Altitude is the angle above the horizon
- *Azimuth* (b) is the angle NOA
 - Degrees E from N
- Observer's coordinates (horizon coordinates) for stars change!

Sunrise, Sunset & Star Trails

Celestial Sphere

- Coordinates on the celestial sphere are analogous to latitude & longitude
 - Declination
 - Right ascension

Celestial Poles & Equator

- N & S *celestial poles* are defined by the projection of the earth's spin axis onto the celestial sphere
- *Celestial equator* is the projection of the earth's equator onto the celestial sphere
 - Objects on the celestial equator have a declination of zero degrees
 - The N & S poles are declination +/- 90 degrees

Defining Celestial Zero Points

- The spin axis of the earth provides a natural definition of one direction
- The location of the sun, when its crosses the celestial equator in the spring defines the other
 - Defines RA = 0

Rising & Setting

- The observer's *meridian* is the great circle drawn through the N pole, which passes directly overhead
- An star *transits* when it crosses the meridian
- The elevation of a star is greatest when it transits

Sidereal Time

- The *sidereal time* is measured by the rotation of the Earth, with respect to the stars (rather than relative to the Sun)
 - Local sidereal time is the right ascension of a star on the observer's meridian
 - One sidereal day corresponds to the time taken for the earth to rotate once with respect to the stars and lasts approximately 23 h 56 min

Hour Angle and Right Ascension

- *Hour angle* (HA) is the angle between an observer's meridian and the hour circle on which some celestial body lies
- Expressed in hours, minutes & seconds, HA gives the time elapsed since a celestial body's last transit (HA > 0), or the time unit the next transit (HA < 0)
- Hence:

HA = LST - RA

Why is E on the Left?

The 30-inch Telescope

• Cassegrain telescope

- Two mirror telescope
- Primary & secondary mirrors

Mirror cover

Two Mirror Telescope

- Concave primary
- Convex secondary

Telescope Design

Secondary Mirror

Telescope Secondary

The 30-inch Telescope

Declination axis

 Equatorial mount

 Hour angle axis rotates 360 degrees in 23 hours 56 minutes

> Hour angle ____ axis

The Dome

Dome & Slit

The Infrared Camera

Observing

- Turn power on
- Open the dome slit (check the weather)
- Open the primary mirror cover
- Set the flip mirror
- Set focus to nominal position
- Check the pointing offsets
- Select a target and point
 - Check telescope tracking and dome orientation
- Acquire an image
- Close mirror cover & close slit
- Power down