Astronomical Coordinates

\&
Telescopes
James Graham
10/7/2009

Observing Basics

- Astronomical coordinates
- The telescope
- The infrared camera

Astronomical Coordinates

- Celestial sphere
- Stars and other astronomical objects occupy three dimensional space
- Since they are at great distances from the earth, it is convenient to describe their location as the projection of their position onto a sphere which is centered at the observer

Observer's Coordinates

- Coordinates of P relative to observer O
- Altitude (a) is the angle AOP
- Altitude is the angle above the horizon
- Azimuth (b) is the angle NOA
- Degrees E from N
- Observer's coordinates (horizon coordinates) for stars
 change!

Sunrise, Sunset \& Star Trails

Celestial Sphere

- Coordinates on the celestial sphere are analogous to latitude \& longitude
- Declination
- Right ascension

Celestial Poles \& Equator

- N \& S celestial poles are defined by the projection of the earth's spin axis onto the celestial sphere
- Celestial equator is the projection of the earth's equator onto the celestial sphere
- Objects on the celestial equator have a declination of zero degrees
- The N \& S poles are declination +/- 90 degrees

Defining Celestial Zero Points

- The spin axis of the earth provides a natural definition of one direction
- The location of the sun, when its crosses the celestial equator in the spring defines the other
- Defines RA $=0$

Rising \& Setting

- The observer's meridian is the great circle drawn through the N pole, which passes directly overhead
- An star transits when it crosses the meridian
- The elevation of a star is greatest when it transits

Sidereal Time

- The sidereal time is measured by the rotation of the Earth, with respect to the stars (rather than relative to the Sun)
- Local sidereal time is the right ascension of a star on the observer's meridian
- One sidereal day corresponds to the time taken for the earth to rotate once with respect to the stars and lasts approximately 23 h 56 min

Hour Angle and Right Ascension

- Hour angle (HA) is the angle between an observer's meridian and the hour circle on which some celestial body lies
- Expressed in hours, minutes \& seconds, HA gives the time elapsed since a celestial body's last transit (HA >0), or the time unit the next transit (HA < $0)$
- Hence:
HA = LST - RA

Why is E on the Left?

The 30-inch Telescope

- Cassegrain telescope
- Two mirror telescope
- Primary \& secondary mirrors

Two Mirror Telescope

- Concave primary
- Convex secondary

Cassegrain telescope

Telescope Design

Secondary Mirror

Telescope Secondary

The 30-inch Telescope

- Equatorial mount
- Hour angle axis rotates 360 degrees in 23 hours 56 minutes

Hour angle axis

The Dome

Dome \& Slit

The Infrared Camera

Observing

- Turn power on
- Open the dome slit (check the weather)
- Open the primary mirror cover
- Set the flip mirror
- Set focus to nominal position
- Check the pointing offsets
- Select a target and point
- Check telescope tracking and dome orientation
- Acquire an image
- Close mirror cover \& close slit
- Power down

