Starlight, Photoelectrons, & Centroids James R. Graham 10/6/2009

Step 1: The Photon Path

Scattering & Absorption by the Earth's Atmosphere

Filter Transmission

Detector Efficiency

Step 2: Systematic Errors

- Imaging detectors suffer from a number of errors that must be corrected before the data can be used for photometry
- Goal is to make the DNs from the FITS files proportional to the brightness of the astronomical source

Bias & Dark Current

- Even a zero second exposure gives nonzero DN
 - Dark current masquerades as real signal
 - Dark current & bias (constants DC offset) can be removed either by subtracting
 - 1. A dark frame of the same exposure time as the science image—takes care of bias too, or
 - 2. An image of blank sky—takes care of bias & dark, and also subtracts the sky brightness! (can be hard to find blank sky)

Relative Pixel Gain a.k.a. Flat Field

- Every pixel in the detector array has a slightly different response to light
 - Some pixels are more efficient than others
- Need to correct for pixel-to-pixel variations by constructing a flat field
 - Make a flat field by observing a uniform source,
 e.g., the twilight sky
 - Divide dark-subtracted images by the flat field

Dark

M13 Raw

M13-Dark

Moments

• For each star we can construct moments of its light distribution

– The first moment is

$$\left\langle x\right\rangle = \sum_{i} x_{i} I_{i} / \sum_{i} I_{i}$$

How Bright is that Star?

- The light from a star is spread over several pixels
- How do we sum the light to get a measure of the total signal from the star?
 - 1. Identify the location of the star (RDPIX)
 - 2. Select the associated pixels by making a mask
 - 3. Sum up the light (TOTAL)
 - Subtract the sky background if necessary

Y - 65 - 42 ١û

 $R = SQRT(X^2 + Y^2)$

Computing the Centroid

```
skyval = median( px[wsky] )
print, 'Median sky value = ',skyval
```

; compute the pixel centroids

```
xbar = total(mask*xx * (px-skyval) )/total(mask*(px-
skyval))
ybar = total(mask*yy * (px-skyval))/total(mask*(px-
skyval))
```

```
print,'<x> = ', xbar
print,'<y> = ', ybar
```

Step 3: Modeling the Noise

- What is the SNR of a given observation?
- How do I choose and optimize the photometric parameters
 - Exposure time required?
 - Aperture diameter?
 - Location and size of sky annuli?

How to Begin

- Write down an expression for the signal and use error propagation to find the noise
 - Express results as signal-to-noise ratio vs. photometric parameters

The Model

- The purpose is to *estimate* the noise contributions
 - Often getting the answer to within a factor of two is fine
 - Make simplifying assumptions—so long as you can justify them

A Photometric Model

• What parameters describe the measurement?

A Photometric Model

- Star
 - Brightness
 - Center (x_0, y_0)
 - Width (σ)
- Sky background in annulus *B*
- Detector
 - QE, readnoise, dark current
- Aperture sizes
 - $-r_1, r_2, r_3$

Photometric Model

- Write down an expression for the signal, S_i , in units of photoelectrons
 - In an individual pixel

$$S_i = F_i + B_i + Q_i + E_i$$

- F_i is the stellar signal = $f_i t$ at pixel $i [e^-]$
 - Different for every pixel
- Q_i is the dark charge = $i_i t$ [e⁻] in a given pixel
 - The dark current i_i varies from pixel to pixel
 - For SNR model assume constant
- B_i is the sky background = $b_i t$ assumed uniform [e⁻]
 - Varies from pixel to pixel, for SNR model assume constant
- E_i is the readout electronic offset or bias [e⁻]
 - Varies from pixel to pixel, for SNR model assume constant

The Stellar Signal

• The stellar signal is found by subtracting the background from S_i and summing over the N pixels that contain the star

$$F_{i} = S_{i} - (B_{i} + Q_{i} + E_{i})$$

$$F_{N} = \sum_{i=1}^{N_{1}} F_{i} = \sum_{i=1}^{N_{1}} S_{i} - (B_{i} + Q_{i} + E_{i})$$

$$N_{1} = \pi r_{1}^{2}$$

- Error in F_N is due to noise in the signal itself, F_N
- Noise due to dark charge, Q_i
- Noise from the background, *B*
- The read out noise σ_{RO}

Noise Sources

$$F_{N} = \sum_{i=1}^{N_{1}} F_{i} = \sum_{i=1}^{N_{1}} \left[S_{i} - \underbrace{\left(B_{i} + Q_{i} + E_{i}\right)}_{Background} \right]$$

$$\langle B \rangle = \text{ average sky/pixel } \& \langle Q \rangle \text{ the average dark charge/pixel}$$

$$\sigma_{F}^{2} = \underbrace{F_{N}}_{\text{Poisson signalnoise}} + \underbrace{N_{1}\left(\langle B \rangle + \langle Q \rangle + \sigma_{RO}^{2}\right)}_{\text{Poisson noise within } r_{1}} + \underbrace{N_{1}\sigma_{Sky}^{2}}_{\sigma_{Sky}} \text{ is the error in the sky} measured between } r_{2} \& r_{3}$$

$$\sigma_{Sky}^{2} = \left(\langle B \rangle + \langle Q \rangle + \sigma_{RO}^{2} \right) / N_{23}$$

Every pixel between $r_2 \& r_3$ contributes to the accuracy of the sky measurement

$$\underbrace{N_{1} = \pi r_{1}^{2}}_{Star}, \quad \underbrace{N_{23} = \pi r_{3}^{2} - \pi r_{2}^{2}}_{Sky}$$

Noise Sources $F_{N} = \sum_{i=1}^{N_{1}} F_{i} = \sum_{i=1}^{N_{1}} \left| S_{i} - \underbrace{\left(I_{i} + B_{i} + E_{i}\right)}_{Background} \right|$ $\langle B \rangle$ = average sky/pixel & $\langle Q_d \rangle$ the average dark charge/pixel $\underbrace{F_{N}}_{\text{Poisson signal noise}} + \underbrace{N_{1}\left(\langle B \rangle + \langle Q_{d} \rangle + \sigma_{RO}^{2}\right)}_{\text{Poisson noise within } r_{1}} + \underbrace{N_{1}\left(\langle B \rangle + \langle Q_{d} \rangle + \sigma_{RO}^{2}\right)/N_{23}}_{\text{Poisson noise within } r_{2} < r < r_{3}}$ $\sigma_{F}^{2} =$ $\underbrace{N_{1} = \pi r_{1}^{2}}_{Star}, \quad \underbrace{N_{23} = \pi r_{3}^{2} - \pi r_{2}^{2}}_{Skv}$

- How do we choose r_1, r_2, r_3 ?
 - Signal increases with N_1
 - Noise increases with N_1 and decreases with N_{23}

Signal-to-Noise

- How do we choose r_1, r_2, r_3 ?
 - Signal increases with N_1
 - Noise increases with N_1 and decreases with N_{23}

An Example

• Suppose the stellar signal has a 2-d Gaussian shape

$$F_{i} = \frac{F_{0}}{2\pi\sigma^{2}} \exp\left[-\frac{1}{2}\left(\frac{r_{i}}{\sigma}\right)^{2}\right]_{i}, \quad r_{i}^{2} = (x - x_{0})^{2} + (y - y_{0})^{2}$$
$$F_{N} = \int_{0}^{r_{1}} 2\pi r F_{i} dr$$

– This tells us how F_N changes with aperture radius

Star Profile & Integral

11.

SNR vs. r_1

