Starlight, Photoelectrons,

 \&Centroids

James R. Graham
10/6/2009

Step 1: The Photon Path

Spectrum of Vega

Scattering \& Absorption by the Earth's Atmosphere

Mirror Reflectivity

Filter Transmission

Detector Efficiency

System Throughput

Photoelectron rate

Step 2: Systematic Errors

- Imaging detectors suffer from a number of errors that must be corrected before the data can be used for photometry
- Goal is to make the DNs from the FITS files proportional to the brightness of the astronomical source

Bias \& Dark Current

- Even a zero second exposure gives nonzero DN
- Dark current masquerades as real signal
- Dark current \& bias (constants DC offset) can be removed either by subtracting

1. A dark frame of the same exposure time as the science image - takes care of bias too, or
2. An image of blank sky - takes care of bias \& dark, and also subtracts the sky brightness! (can be hard to find blank sky)

Relative Pixel Gain a.k.a. Flat Field

- Every pixel in the detector array has a slightly different response to light
- Some pixels are more efficient than others
- Need to correct for pixel-to-pixel variations by constructing a flat field
- Make a flat field by observing a uniform source, e.g., the twilight sky
- Divide dark-subtracted images by the flat field

M13 Raw

M13-Dark

Flat

(M13-Dark)/Flat

Moments

- For each star we can construct moments of its light distribution
- The first moment is

$$
\langle x\rangle=\sum_{i} x_{i} I_{i} / \sum_{i} I_{i}
$$

How Bright is that Star?

- The light from a star is spread over several pixels
- How do we sum the light to get a measure of the total signal from the star?

1. Identify the location of the star (RDPIX)
2. Select the associated pixels by making a mask
3. Sum up the light (TOTAL)

- Subtract the sky background if necessary

Mask

(M13-Dark)/Flat

(M13-Dark)/Flat

Masksky

Computing the Centroid

```
skyval = median( px[wsky] )
print, 'Median sky value = ',skyval
; compute the pixel centroids
xbar = total(mask*xx * (px-skyval) )/total(mask*(px-
    skyval))
ybar = total(mask*yy * (px-skyval))/total(mask*(px-
    skyval))
print,'<x> = ', xbar
print,'<y> = ', ybar
```


Step 3: Modeling the Noise

- What is the SNR of a given observation?
- How do I choose and optimize the photometric parameters
- Exposure time required?
- Aperture diameter?
- Location and size of sky annuli?

How to Begin

- Write down an expression for the signal and use error propagation to find the noise
- Express results as signal-to-noise ratio vs. photometric parameters

The Model

- The purpose is to estimate the noise contributions
- Often getting the answer to within a factor of two is fine
- Make simplifying assumptions-so long as you can justify them

A Photometric Model

- What parameters describe the measurement?

A Photometric Model

- Star
- Brightness
- Center $\left(x_{0,} y_{0}\right)$
- Width (σ)
- Sky background in annulus
- B
- Detector
- $Q E$, readnoise, dark current
- Aperture sizes
$-r_{1}, r_{2}, r_{3}$

Photometric Model

- Write down an expression for the signal, S_{i}, in units of photoelectrons
- In an individual pixel

$$
S_{i}=F_{i}+B_{i}+Q_{i}+E_{i}
$$

$-F_{i}$ is the stellar signal $=f_{i} t$ at pixel $i\left[\mathrm{e}^{-}\right]$

- Different for every pixel
- Q_{i} is the dark charge $=i_{i} t\left[\mathrm{e}^{-}\right]$in a given pixel
- The dark current i_{i} varies from pixel to pixel
- For SNR model assume constant
$-B_{i}$ is the sky background $=b_{i} t$ assumed uniform [e^{-}]
- Varies from pixel to pixel, for SNR model assume constant
- E_{i} is the readout electronic offset or bias [e^{-}]
- Varies from pixel to pixel, for SNR model assume constant

The Stellar Signal

- The stellar signal is found by subtracting the background from S_{i} and summing over the N pixels that contain the star

$$
\begin{aligned}
& F_{i}=S_{i}-\left(B_{i}+Q_{i}+E_{i}\right) \\
& F_{N}=\sum_{i=1}^{N_{1}} F_{i}=\sum_{i=1}^{N_{1}} S_{i}-\left(B_{i}+Q_{i}+E_{i}\right) \\
& N_{1}=\pi r_{1}^{2}
\end{aligned}
$$

- Error in F_{N} is due to noise in in the signal itself, F_{N}
- Noise due to dark charge, Q_{i}
- Noise from the background, B
- The read out noise $\sigma_{R O}$

Noise Sources

$F_{N}=\sum_{i=1}^{N_{1}} F_{i}=\sum_{i=1}^{N_{1}}[S_{i}-\underbrace{\left(B_{i}+Q_{i}+E_{i}\right)}_{\text {Background }}]$
$\langle B\rangle=$ average sky/pixel $\&\langle Q\rangle$ the average dark charge/pixel

$$
\sigma_{F}^{2}=\underbrace{F_{N}}_{\text {Poisson signal noise }}+\underbrace{N_{1}\left(\langle B\rangle+\langle Q\rangle+\sigma_{R O}^{2}\right)}_{\text {Poisson noisewithin } r_{1}}+\underbrace{N_{1} \sigma_{S k y}^{2}}_{\substack{\sigma_{\text {Sle }} \text { is the error in the sky } \\ \text { measured between } r_{2} \& r_{3}}}
$$

$\sigma_{S k y}^{2}=\left(\langle B\rangle+\langle Q\rangle+\sigma_{R O}^{2}\right) / N_{23}$
Every pixel between $r_{2} \& r_{3}$ contributes to the accuracy of the sky measurement

$$
\underbrace{N_{1}=\pi r_{1}^{2}}_{\text {Star }}, \underbrace{N_{23}=\pi r_{3}^{2}-\pi r_{2}^{2}}_{S k y}
$$

Noise Sources

$$
F_{N}=\sum_{i=1}^{N_{1}} F_{i}=\sum_{i=1}^{N_{1}}[S_{i}-\underbrace{\left(I_{i}+B_{i}+E_{i}\right)}_{\text {Background }}]
$$

$\langle B\rangle=$ average sky/pixel $\&\left\langle Q_{d}\right\rangle$ the average dark charge/pixel
$\sigma_{F}^{2}=\underbrace{F_{N}}_{\text {Poisson signal noise }}+\underbrace{N_{1}\left(\langle B\rangle+\left\langle Q_{d}\right\rangle+\sigma_{R O}^{2}\right)}_{\text {Poisson noise within } r_{1}}+\underbrace{N_{1}\left(\langle B\rangle+\left\langle Q_{d}\right\rangle+\sigma_{R O}^{2}\right) / N_{23}}_{\text {Poisson noisewithin } r_{2}<r<r_{3}}$

$$
\underbrace{N_{1}=\pi r_{1}^{2}}_{\text {Star }}, \underbrace{N_{23}=\pi r_{3}^{2}-\pi r_{2}^{2}}_{\text {Sky }}
$$

- How do we choose r_{1}, r_{2}, r_{3} ?
- Signal increases with N_{1}
- Noise increases with N_{1} and decreases with N_{23}

Signal-to-Noise

$S N R=\frac{\overbrace{F_{N}}^{\text {Signal }}}{\sqrt{\underbrace{F_{N}}_{\text {SignalNoise }}+\underbrace{N_{1}\left(\langle B\rangle+\langle Q\rangle+\sigma_{R O}^{2}\right)}_{\begin{array}{c}\text { SkyDark\&RON } \\ \text { instar aperture }\end{array}}+\underbrace{N_{1}\left(\langle B\rangle+\langle Q\rangle+\sigma_{R O}^{2}\right) / N_{23}}_{\begin{array}{c}\text { SkyDark\&RON } \\ \text { inskyaperture }\end{array}}}}$

- How do we choose r_{1}, r_{2}, r_{3} ?
- Signal increases with N_{1}
- Noise increases with N_{1} and decreases with N_{23}

An Example

- Suppose the stellar signal has a 2-d Gaussian shape

$$
F_{i}=\frac{F_{0}}{2 \pi \sigma^{2}} \exp \left[-\frac{1}{2}\left(\frac{r_{i}}{\sigma}\right)^{2}\right], r_{i}^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}
$$

$$
F_{N}=\int_{0}^{r_{1}} 2 \pi r F_{i} d r
$$

- This tells us how F_{N} changes with aperture radius

Star

Profile \& Integral

SNR vs. r_{l}

- $F_{0}=100 \mathrm{e}^{-}$
- $B_{i}=100 \mathrm{e}^{-}$
- $I_{i}=0 \mathrm{e}^{-}$
- $\sigma_{\mathrm{RO}}=10 \mathrm{e}^{-r m s}$
- $N_{23} \gg N_{1}$

Sígnal to Noise Ratio

