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Step 1: The Photon Path
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Step 2: Systematic Errors

• Imaging detectors suffer from a number of
errors that must be corrected before the data
can be used for photometry

• Goal is to make the DNs from the FITS
files proportional to the brightness of the
astronomical source



Bias & Dark Current

• Even a zero second exposure gives non-
zero DN

– Dark current masquerades as real signal
– Dark current & bias (constants DC offset) can

be removed either by subtracting
1. A dark frame of the same exposure time as the

science image—takes care of bias too, or
2. An image of blank sky—takes care of bias & dark,

and also subtracts the sky brightness! (can be hard
to find blank sky)



Relative Pixel Gain a.k.a. Flat Field

• Every pixel in the detector array has a
slightly different response to light
– Some pixels are more efficient than others

• Need to correct for pixel-to-pixel variations
by constructing a flat field
– Make a flat field by observing a uniform source,

e.g., the twilight sky
– Divide dark-subtracted images by the flat field















Moments

• For each star we can construct moments of
its light distribution
– The first moment is

x = xi Ii
i
∑ Ii

i
∑



How Bright is that Star?

• The light from a star is spread over several pixels
• How do we sum the light to get a measure of the

total signal from the star?
1. Identify the location of the star (RDPIX)
2. Select the associated pixels by making a mask
3. Sum up the light (TOTAL)

– Subtract the sky background if necessary























Computing the Centroid
skyval = median( px[wsky] )
print, 'Median sky value = ',skyval

; compute the pixel centroids

xbar = total(mask*xx * (px-skyval) )/total(mask*(px-
skyval))

ybar = total(mask*yy * (px-skyval))/total(mask*(px-
skyval))

print,'<x> = ', xbar
print,'<y> = ', ybar



Step 3: Modeling the Noise

• What is the SNR of a given observation?
• How do I choose and optimize the

photometric parameters
– Exposure time required?
– Aperture diameter?
– Location and size of sky annuli?



How to Begin

• Write down an expression for the signal and
use error propagation to find the noise
– Express results as signal-to-noise ratio vs.

photometric parameters



The Model

• The purpose is to estimate the noise
contributions
– Often getting the answer to within a factor of

two is fine
– Make simplifying assumptions—so long as you

can justify them



A Photometric Model

• What parameters
describe the
measurement?



A Photometric Model
• Star

– Brightness
– Center (x0, y0)
– Width (σ)

• Sky background in annulus
– B

• Detector
– QE, readnoise, dark current

• Aperture sizes
– r1, r2, r3

r1

r2 r3



Photometric Model
• Write down an expression for the signal, Si , in units of

photoelectrons
– In an individual pixel

– Fi is the stellar signal = fi t  at pixel i [e- ]
• Different for every pixel

– Qi is the dark charge = ii t [e-] in a given pixel
• The dark current iivaries from pixel to pixel
• For SNR model assume constant

– Bi  is the sky background = bit assumed uniform [e- ]
• Varies from pixel to pixel, for SNR model assume constant

– Ei  is the readout electronic offset or bias [e- ]
• Varies from pixel to pixel, for SNR model assume constant
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Si = Fi + Bi +Qi + Ei



The Stellar Signal
• The stellar signal is found by subtracting the background from Si and

summing over the N pixels that contain the star

• Error in FN is due to noise in in the signal itself, FN

• Noise due to dark charge, Qi

• Noise from the background, B
• The read out noise σRO
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Fi = Si − Bi +Qi + Ei( )
FN = Fi
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Noise Sources
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σ Sky  is the error in the sky
measured between r2 & r3
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Noise Sources

• How do we choose r1, r2, r3?
– Signal increases with N1

– Noise increases with N1 and decreases with N23
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Signal-to-Noise

• How do we choose r1, r2, r3?
– Signal increases with N1
– Noise increases with N1 and decreases with N23
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An Example

• Suppose the stellar signal has a 2-d
Gaussian shape

– This tells us how FN changes with aperture
radius
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Star
Profile &
Integral
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SNR vs. r1

• F0 = 100 e-

• Bi  = 100 e-

• Ii  = 0 e-

• σRO = 10 e- rms
• N23 >> N1


