The Method of Maximum Likelihood

James R. Graham 10/21/2009

Maximum Likelihood

- Experiments select a sample from the parent population
 - Suppose we select *N* points from a Gaussian parent distribution, with mean μ and standard deviation, σ
 - The probability of making any single observation, x_i , is

$$P_i = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x_i - \mu}{\sigma}\right)^2\right]$$

- We do not know μ or σ *a priori*
 - $-\mu$ must be derived from the data
 - Denote this estimate μ '
- What expression for µ' gives the *maximum likelihood* that the parent population has a particular mean given a set of data?

Using Maximum Likelihood to estimate the mean

- Suppose the parent population has a mean μ ' and a known standard deviation σ
 - The probability of observing the *i*-th point x_i is

$$P_i(\mu') = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x_i - \mu'}{\sigma}\right)^2\right]$$

Estimating μ

- Consider all *N* observations
 - If the measurements are independent the probability for observing that set is the product of the individual $P_i(\mu')$

$$P(\mu') = \prod_{i=1}^{N} P_i(\mu')$$
$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \exp\left[-\frac{1}{2}\sum_{i=1}^{N} \left(\frac{x_i - \mu'}{\sigma}\right)^2\right]$$

- According to the method of *maximum likelihood* we should compare the *P*(μ') for various parent populations with different μ' (all with the same σ)
 - The probability is greatest that the data were derived from a population with $\mu'=\mu$
 - We assert that the *most likely* parent population is the correct one

Calculating the mean

• According to maximum likelihood the most probable value of μ ' is the one which gives the maximum probability, $P(\mu')$

– Maximize

$$P(\mu') = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \exp\left[-\frac{1}{2}\sum\left(\frac{x_{i}-\mu'}{\sigma}\right)^{2}\right]$$

or minimize, X

$$X = -\frac{1}{2} \sum \left(\frac{x_i - \mu'}{\sigma}\right)^2$$

• Find the minimum of *X* from the derivative

$$\frac{\partial X}{\partial \mu'} = -\frac{1}{2} \frac{\partial}{\partial \mu'} \sum \left(\frac{x_i - \mu'}{\sigma}\right)^2 = 0$$
$$= -\frac{1}{2} \sum \frac{\partial}{\partial \mu'} \left(\frac{x_i - \mu'}{\sigma}\right)^2 = \sum \frac{x_i - \mu'}{\sigma^2} = 0$$

since the derivative of a sum is the sum of the derivatives

• The most probable value for the mean is given by

$$\sum (x_i - \mu') = 0$$
$$\sum x_i - \sum \mu' = 0$$

$$\mu' = \frac{1}{N} \sum x_i$$

Weighting data

• Suppose some measurements are better than others, some values are drawn from a population with smaller σ_i

– Maximize

$$P(\mu') = \prod_{i=1}^{N} \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) \exp \left[-\frac{1}{2} \sum \left(\frac{x_i - \mu'}{\sigma_i} \right)^2 \right]$$

Weighted mean

• Maximizing the probability is equivalent to minimizing the argument in the exponential

$$-\frac{1}{2}\frac{\partial}{\partial\mu'}\sum\left(\frac{x_i-\mu'}{\sigma_i}\right)^2 = \sum\frac{x_i-\mu'}{\sigma_i^2} = 0$$

$$\mu' = \frac{\sum w_i x_i}{\sum w_i}, \quad w_i = 1/\sigma_i^2$$

• The most probable value of the mean is the *weighted* (inversely by the variance) mean

Error in the weighted mean

• If $y = f(x_1, x_2, x_3...)$ The fundamental law of error propagation is

$$\sigma_{y}^{2} = \left(\frac{\partial f}{\partial x_{1}}\right)^{2} \sigma_{x_{1}}^{2} + \left(\frac{\partial f}{\partial x_{2}}\right)^{2} \sigma_{x_{2}}^{2} + \left(\frac{\partial f}{\partial x_{3}}\right)^{2} \sigma_{x_{3}}^{2} + \dots$$

For a quantity where the errors in $x_1, x_2...$ are uncorrelated

If we apply this to the formula for μ '

$$\sigma_{\mu'}^{2} = \left(\frac{\partial \mu'}{\partial x_{1}}\right)^{2} \sigma_{1}^{2} + \left(\frac{\partial \mu'}{\partial x_{2}}\right)^{2} \sigma_{3}^{2} + \left(\frac{\partial \mu'}{\partial x_{3}}\right)^{2} \sigma_{3}^{2} + \dots$$
$$= \sum_{j} \left(\frac{\partial \mu'}{\partial x_{j}}\right)^{2} \sigma_{j}^{2}$$

So the tricky part is computing

$$\frac{\partial \mu'}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\sum_{i} w_i x_i}{\sum_{i} w_i} \right)$$

Working out the derivative

$$\frac{\partial \mu'}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\sum_i w_i x_i}{\sum_i w_i} \right)$$
$$= \left(\sum_i w_i \right)^{-1} \sum_i \frac{\partial}{\partial x_j} (w_i x_i)$$
$$= \left(\sum_i w_i \right)^{-1} \sum_i w_i \delta_{ij}$$
$$= \left(\sum_i w_i \right)^{-1} w_j$$

Putting it all together

$$\sigma_{\mu'}^{2} = \sum_{j} \left(\frac{\partial \mu'}{\partial x_{j}} \right)^{2} \sigma_{j}^{2}$$

$$= \sum_{j} \left(\frac{w_{j}}{\sum_{i} w_{i}} \right)^{2} \sigma_{j}^{2}$$

$$= \left(\sum_{i} w_{i} \right)^{-2} \sum_{j} \left(w_{j} \sigma_{j} \right)^{2}, \quad \text{but} \quad w_{j} = 1/\sigma_{j}^{2}$$

$$= \left(\sum_{i} w_{i} \right)^{-2} \sum_{j} w_{j}$$

$$= \left(\sum_{i} w_{i} \right)^{-1}$$

Or

$$\sigma_{\mu'}^2 = \left(\sum_i w_i\right)^{-1}$$

implies

$$\frac{1}{\sigma_{\mu'}^2} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} + \dots + \frac{1}{\sigma_N^2}$$

How to Fit a Straight Line

• Suppose our data, y_i , are drawn from a population such that

$$y(x) = a_0 + b_0 x$$

• For any *x_i* we can calculate the probability of making the observation *y_i* as

$$P_i = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left\{\frac{y_i - y(x_i)}{\sigma_i}\right\}^2\right]$$

Straight Line Fit

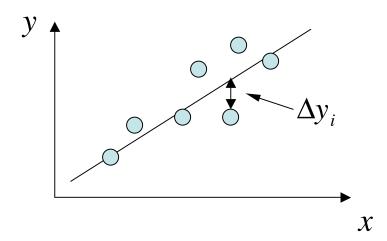
• The probability for making the observed set of measurements is the product

$$P(a_0, b_0) = \prod_{i=1}^{N} P_i$$
$$= \prod \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) \exp \left[-\frac{1}{2} \sum \left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 \right]$$

Straight Line Fit

Similarly, the probability for making the observed set of measurements given coefficients, *a* and *b* is

$$P(a,b) = \prod \left(\frac{1}{\sigma_i \sqrt{2\pi}}\right) \exp \left[-\frac{1}{2} \sum \left(\frac{\Delta y_i}{\sigma_i}\right)^2\right]$$
$$\Delta y_i = y_i - a - bx_i$$



Straight Line Fit

- The product term is a constant, independent of *a* and *b*
 - Maximizing P(a, b) is equivalent to minimizing the sum of the exponential

$$\chi^{2} \equiv \sum \left(\frac{\Delta y_{i}}{\sigma_{i}}\right)^{2}$$
$$= \sum \frac{1}{\sigma_{i}^{2}} (y_{i} - a - bx_{i})^{2}$$

Minimizing χ^2

• To find *a* and *b* which corresponds to the minimum χ^2 for constant σ $\frac{\partial}{\partial a}\chi^2 = \frac{\partial}{\partial a} \left[\frac{1}{\sigma^2} \sum (y_i - a - bx_i)^2 \right]$ $= -\frac{2}{\sigma^2} \sum (y_i - a - bx_i) = 0$

$$\frac{\partial}{\partial b}\chi^2 = \frac{\partial}{\partial b} \left[\frac{1}{\sigma^2} \sum (y_i - a - bx_i)^2 \right]$$

$$=-\frac{2}{\sigma^2}\sum x_i(y_i-a-bx_i)=0$$

Minimizing χ^2

• These can be rearranged to find pair of simultaneous equations for *a* and *b* which corresponds to the minimum χ^2

$$\sum y_i = aN + b\sum x_i$$
$$\sum x_i y_i = a\sum x_i + b\sum x_i^2$$

Minimizing χ^2

• Solving these of simultaneous equations

$$a = \frac{1}{\Delta} \begin{vmatrix} \sum y_i & \sum x_i \\ \sum x_i y_i & \sum x_i^2 \end{vmatrix}$$
$$b = \frac{1}{\Delta} \begin{vmatrix} N & \sum y_i \\ \sum x_i & \sum x_i y_i \end{vmatrix}$$
$$\Delta = \begin{vmatrix} N & \sum x_i \\ \sum x_i & \sum x_i^2 \end{vmatrix}$$