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Maximum Likelihood

• Experiments select a sample from the parent
population
– Suppose we select N points from a Gaussian

parent distribution, with mean µ and standard
deviation, σ

– The probability of making any single
observation, xi , is
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• We do not know µ or σ a priori
– µ must be derived from the data
– Denote this estimate µ’

• What expression for µ’ gives the maximum
likelihood that the parent population has a
particular mean given a set of data?



Using Maximum Likelihood to
estimate the mean

• Suppose the parent population has a mean µ’
and a known standard deviation σ
– The probability of observing the i-th point xi is
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Estimating µ

• Consider all N observations
– If the measurements are independent the

probability for observing that set is the product
of the individual Pi (µ’)
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• According to the method of maximum
likelihood we should compare the P(µ’) for
various parent populations with different µ’
(all with the same σ)
– The probability is greatest that the data were

derived from a population with µ’=µ
– We assert that the most likely parent population

is the correct one



Calculating the mean

• According to maximum likelihood the most
probable value of µ’ is the one which gives
the maximum probability, P(µ’)
– Maximize

or minimize, X
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• Find the minimum of X from the derivative

since the derivative of a sum is the sum of
the derivatives
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• The most probable value for the mean is
given by
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Weighting data

• Suppose some measurements are better than
others, some values are drawn from a
population with smaller σi
– Maximize
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Weighted mean

• Maximizing the probability is equivalent to
minimizing the argument in the exponential

• The most probable value of the mean is the
weighted (inversely by the variance) mean� 
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Error in the weighted mean

• If y = f(x1, x2, x3…) The fundamental law of
error propagation is

For a quantity where the errors in x1, x2…
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If we apply this to the formula for µ’
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So the tricky part is computing
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Working out the derivative
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Putting it all together
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How to Fit a Straight Line

• Suppose our data, yi, are drawn from a
population such that

y(x) = a0 + b0 x
• For any xi we can calculate the probability

of making the observation yi as
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Straight Line Fit

• The probability for making the observed set
of measurements is the product

� 

P a0,b0( ) = Pi
i=1

N

∏

= 1
σ i 2π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∏ exp − 1

2
yi − y(xi)

σ i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 



Straight Line Fit

• Similarly, the
probability for
making the
observed set of
measurements
given
coefficients, a
and b is
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Straight Line Fit

• The product term is a constant, independent
of a and b
– Maximizing P(a, b) is equivalent to minimizing

the sum of the exponential
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Minimizing χ2

• To find a and b which corresponds to the
minimum χ2 for constant σ
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Minimizing χ2

• These can be rearranged to find pair of
simultaneous equations for a and b which
corresponds to the minimum χ2
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Minimizing χ2

• Solving these of simultaneous equations
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