The Method

 of
Maximum Likelihood

James R. Graham

10/21/2009

Maximum Likelihood

- Experiments select a sample from the parent population
- Suppose we select N points from a Gaussian parent distribution, with mean μ and standard deviation, σ
- The probability of making any single observation, x_{i}, is

$$
P_{i}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

- We do not know μ or σ a priori
$-\mu$ must be derived from the data
- Denote this estimate μ,
- What expression for μ^{\prime} gives the maximum likelihood that the parent population has a particular mean given a set of data?

Using Maximum Likelihood to estimate the mean

- Suppose the parent population has a mean μ, and a known standard deviation σ
- The probability of observing the i-th point x_{i} is

$$
P_{i}\left(\mu^{\prime}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu^{\prime}}{\sigma}\right)^{2}\right]
$$

Estimating μ

- Consider all N observations
- If the measurements are independent the probability for observing that set is the product of the individual $P_{i}\left(\mu^{\prime}\right)$

$$
\begin{aligned}
P\left(\mu^{\prime}\right) & =\prod_{i=1}^{N} P_{i}\left(\mu^{\prime}\right) \\
& =\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu^{\prime}}{\sigma}\right)^{2}\right]
\end{aligned}
$$

- According to the method of maximum likelihood we should compare the $P\left(\mu^{\prime}\right)$ for various parent populations with different μ, (all with the same σ)
- The probability is greatest that the data were derived from a population with $\mu^{\prime}=\mu$
- We assert that the most likely parent population is the correct one

Calculating the mean

- According to maximum likelihood the most probable value of μ^{\prime} is the one which gives the maximum probability, $P\left(\mu^{\prime}\right)$
- Maximize

$$
P\left(\mu^{\prime}\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \exp \left[-\frac{1}{2} \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma}\right)^{2}\right]
$$

or minimize, X

$$
X=-\frac{1}{2} \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma}\right)^{2}
$$

- Find the minimum of X from the derivative

$$
\begin{aligned}
\frac{\partial X}{\partial \mu^{\prime}} & =-\frac{1}{2} \frac{\partial}{\partial \mu^{\prime}} \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma}\right)^{2}=0 \\
& =-\frac{1}{2} \sum \frac{\partial}{\partial \mu^{\prime}}\left(\frac{x_{i}-\mu^{\prime}}{\sigma}\right)^{2}=\sum \frac{x_{i}-\mu^{\prime}}{\sigma^{2}}=0
\end{aligned}
$$

since the derivative of a sum is the sum of the derivatives

- The most probable value for the mean is given by

$$
\begin{aligned}
& \sum\left(x_{i}-\mu^{\prime}\right)=0 \\
& \sum x_{i}-\sum \mu^{\prime}=0
\end{aligned}
$$

$$
\mu^{\prime}=\frac{1}{N} \sum x_{i}
$$

Weighting data

- Suppose some measurements are better than others, some values are drawn from a population with smaller σ_{i}
- Maximize

$$
P\left(\mu^{\prime}\right)=\prod_{i=1}^{N}\left(\frac{1}{\sigma_{i} \sqrt{2 \pi}}\right) \exp \left[-\frac{1}{2} \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma_{i}}\right)^{2}\right]
$$

Weighted mean

- Maximizing the probability is equivalent to minimizing the argument in the exponential

$$
-\frac{1}{2} \frac{\partial}{\partial \mu^{\prime}} \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma_{i}}\right)^{2}=\sum \frac{x_{i}-\mu^{\prime}}{\sigma_{i}^{2}}=0
$$

$$
\mu^{\prime}=\frac{\sum w_{i} x_{i}}{\sum w_{i}}, \quad w_{i}=1 / \sigma_{i}^{2}
$$

- The most probable value of the mean is the weighted (inversely by the variance) mean

Error in the weighted mean

- If $y=f\left(x_{1}, x_{2}, x_{3} \ldots\right)$ The fundamental law of error propagation is

$$
\sigma_{y}^{2}=\left(\frac{\partial f}{\partial x_{1}}\right)^{2} \sigma_{x_{1}}^{2}+\left(\frac{\partial f}{\partial x_{2}}\right)^{2} \sigma_{x_{2}}^{2}+\left(\frac{\partial f}{\partial x_{3}}\right)^{2} \sigma_{x_{3}}^{2}+\ldots
$$

For a quantity where the errors in $x_{1}, x_{2} \ldots$ are uncorrelated

If we apply this to the formula for μ '

$$
\begin{aligned}
\sigma_{\mu^{\prime}}^{2} & =\left(\frac{\partial \mu^{\prime}}{\partial x_{1}}\right)^{2} \sigma_{1}^{2}+\left(\frac{\partial \mu^{\prime}}{\partial x_{2}}\right)^{2} \sigma_{3}^{2}+\left(\frac{\partial \mu^{\prime}}{\partial x_{3}}\right)^{2} \sigma_{3}^{2}+\ldots \\
& =\sum_{j}\left(\frac{\partial \mu^{\prime}}{\partial x_{j}}\right)^{2} \sigma_{j}^{2}
\end{aligned}
$$

So the tricky part is computing

$$
\frac{\partial \mu^{\prime}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(\frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}}\right)
$$

Working out the derivative

$$
\begin{aligned}
\frac{\partial \mu^{\prime}}{\partial x_{j}} & =\frac{\partial}{\partial x_{j}}\left(\frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}}\right) \\
& =\left(\sum_{i} w_{i}\right)^{-1} \sum_{i} \frac{\partial}{\partial x_{j}}\left(w_{i} x_{i}\right) \\
& =\left(\sum_{i} w_{i}\right)^{-1} \sum_{i} w_{i} \delta_{i j} \\
& =\left(\sum_{i} w_{i}\right)^{-1} w_{j}
\end{aligned}
$$

Putting it all together

$$
\begin{aligned}
\sigma_{\mu}^{2} & =\sum_{j}\left(\frac{\partial \mu^{\prime}}{\partial x_{j}}\right)^{2} \sigma_{j}^{2} \\
& =\sum_{j}\left(\frac{w_{j}}{\sum_{i} w_{i}}\right)^{2} \sigma_{j}^{2} \\
& =\left(\sum_{i} w_{i}\right)^{-2} \sum_{j}\left(w_{j} \sigma_{j}\right)^{2}, \quad \text { but } w_{j}=1 / \sigma_{j}^{2} \\
& =\left(\sum_{i} w_{i}\right)^{-2} \sum_{i} w_{j} \\
& =\left(\sum_{i} w_{i}\right)^{-1}
\end{aligned}
$$

Or

$$
\sigma_{\mu^{\prime}}^{2}=\left(\sum_{i} w_{i}\right)^{-1}
$$

implies

$$
\frac{1}{\sigma_{\mu^{\prime}}^{2}}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}+\cdots+\frac{1}{\sigma_{N}^{2}}
$$

How to Fit a Straight Line

- Suppose our data, y_{i}, are drawn from a population such that

$$
y(x)=a_{0}+b_{0} x
$$

- For any x_{i} we can calculate the probability of making the observation y_{i} as

$$
P_{i}=\frac{1}{\sigma_{i} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left\{\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right\}^{2}\right]
$$

Straight Line Fit

- The probability for making the observed set of measurements is the product

$$
\begin{aligned}
P\left(a_{0}, b_{0}\right) & =\prod_{i=1}^{N} P_{i} \\
& =\prod\left(\frac{1}{\sigma_{i} \sqrt{2 \pi}}\right) \exp \left[-\frac{1}{2} \sum\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]
\end{aligned}
$$

Straight Line Fit

- Similarly, the probability for making the

$$
P(a, b)=\Pi\left(\frac{1}{\sigma_{i} \sqrt{2 \pi}}\right) \exp \left[-\frac{1}{2} \sum\left(\frac{\Delta y_{i}}{\sigma_{i}}\right)^{2}\right]
$$ observed set of $\Delta y_{i}=y_{i}-a-b x_{i}$ measurements given

coefficients, a and b is

Straight Line Fit

- The product term is a constant, independent of a and b
- Maximizing $P(a, b)$ is equivalent to minimizing the sum of the exponential

$$
\begin{aligned}
\chi^{2} & \equiv \sum\left(\frac{\Delta y_{i}}{\sigma_{i}}\right)^{2} \\
& =\sum \frac{1}{\sigma_{i}^{2}}\left(y_{i}-a-b x_{i}\right)^{2}
\end{aligned}
$$

Minimizing χ^{2}

- To find a and b which corresponds to the minimum χ^{2} for constant σ

$$
\begin{aligned}
\frac{\partial}{\partial a} \chi^{2} & =\frac{\partial}{\partial a}\left[\frac{1}{\sigma^{2}} \sum\left(y_{i}-a-b x_{i}\right)^{2}\right] \\
& =-\frac{2}{\sigma^{2}} \sum\left(y_{i}-a-b x_{i}\right)=0 \\
\frac{\partial}{\partial b} \chi^{2} & =\frac{\partial}{\partial b}\left[\frac{1}{\sigma^{2}} \sum\left(y_{i}-a-b x_{i}\right)^{2}\right] \\
& =-\frac{2}{\sigma^{2}} \sum x_{i}\left(y_{i}-a-b x_{i}\right)=0
\end{aligned}
$$

Minimizing χ^{2}

- These can be rearranged to find pair of simultaneous equations for a and b which corresponds to the minimum χ^{2}

$$
\begin{aligned}
\sum y_{i} & =a N+b \sum x_{i} \\
\sum x_{i} y_{i} & =a \sum x_{i}+b \sum x_{i}^{2}
\end{aligned}
$$

Minimizing χ^{2}

- Solving these of simultaneous equations

$$
\begin{aligned}
& a=\frac{1}{\Delta}\left|\begin{array}{cc}
\sum y_{i} & \sum x_{i} \\
\sum x_{i} y_{i} & \sum x_{i}^{2}
\end{array}\right| \\
& b=\frac{1}{\Delta}\left|\begin{array}{cc}
N & \sum y_{i} \\
\sum x_{i} & \sum x_{i} y_{i}
\end{array}\right| \\
& \Delta=\left|\begin{array}{cc}
N & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right|
\end{aligned}
$$

