Computer Arithmetic \& Computational Errors

James R. Graham
3/19/2009

Types of Problem

- Problems can be ill-conditioned, badly posed, or sensitive
- In the linear algebra problem tiny changes of the coefficients produce large changes in the solutions
- See IDL examples
- This is not the fault of the algorithm

Types of Problem

- Unstable
- Evaluation of $\exp (x)$ for $x<0$ using Taylor series is an unstable algorithm
- See IDL example
- Numerical problems only have useful solutions when we have well-conditioned problems and stable algorithms.

Representation of Numbers

- Computers calculations involve
- Integers or whole numbers
- Floating point or real numbers
- Numbers represented internally as 1 's \& 0's
- There is nothing natural about base 10
- Base 12,20 , and 60 have been used by humans

Integers

- Computer integers are represented by a finite number of digits
- E.g, 16 bit signed binary
- $-32768\left(-2^{15}\right)$ to $32767\left(2^{15}-1\right)$
- Numbers outside this range do not exist!
- $9-12=-3$
- $83 \times 16=48$
- $5 \div 6=0$
- $32767+1=-32768$
- Most languages support a variety of storage
- Unsigned 16-bit integers: 0-65,535 ($2^{16}-1$)
- Long 32-bit signed integers $-2,147,483,648\left(-2^{31}\right)$ to $+2,147,483,647\left(-2^{31}-1\right)$
- Long long 64 bit unsigned 0-18,446,744,073,709,551,615 (264-1)

Floating Point

- Some early computers supported fixed point arithmetic
- Essentially integer arithmetic with an imaginary decimal point
- Floating point numbers are represented as $a \times 10^{b}$
- a is the mantissa and b is the exponent
$-a$ is usually written with one digit to the right of the decimal and b is usually an integer
- Both a and b have a finite number of digits
- There is a finite number of floating point numbers that can be represented.

Floating Point

- Two conditions are associated with the limited range of floats-there are only a finite number of values between 0 and ∞
- Overflow: computation results in a number greater than the largest float $=\infty$
- Underflow: computation results in a number that is indistinguishable from 0
- No wrap-around with floating point numbers
- Machine accuracy ε such that $1.0+\varepsilon=1.0$
- ε is not the smallest number that can be represented!
- Every floating point operation has a round off error of about ε
- If you are lucky, round off errors may cancel out, but there are circumstances when round off errors are cumulative

