Computer Arithmetic & Computational Errors

James R. Graham 3/19/2009

Types of Problem

- Problems can be ill-conditioned, badly posed, or sensitive
 - In the linear algebra problem tiny changes of the coefficients produce large changes in the solutions
 - See IDL examples
 - This is not the fault of the algorithm

Types of Problem

- Unstable
 - Evaluation of exp(x) for x < 0 using Taylor series is an unstable algorithm
 - See IDL example
- Numerical problems only have useful solutions when we have well-conditioned problems and stable algorithms.

Representation of Numbers

- Computers calculations involve
 - Integers or whole numbers
 - Floating point or real numbers
- Numbers represented internally as 1's & 0's
 - There is nothing natural about base 10
 - Base 12, 20, and 60 have been used by humans

Integers

- Computer integers are represented by a finite number of digits
 - E.g, 16 bit signed binary
 - -32768 (-2¹⁵) to 32767 (2¹⁵-1)
 - Numbers outside this range do not exist!
 - 9 12 = -3
 - $83 \times 16 = 48$
 - $5 \div 6 = 0$
 - 32767 + 1 = -32768
 - Most languages support a variety of storage
 - Unsigned 16-bit integers: 0-65,535 (2¹⁶-1)
 - Long 32-bit signed integers -2,147,483,648 (-2³¹) to +2,147,483,647 (-2³¹-1)
 - Long long 64 bit unsigned 0-18,446,744,073,709,551,615 (2⁶⁴-1)

Floating Point

- Some early computers supported fixed point arithmetic
 - Essentially integer arithmetic with an imaginary decimal point
- Floating point numbers are represented as $a \ge 10^{b}$
 - *a* is the **mantissa** and *b* is the **exponent**
 - *a* is usually written with one digit to the right of the decimal and *b* is usually an integer
 - Both *a* and *b* have a finite number of digits
 - There is a finite number of floating point numbers that can be represented.

Floating Point

- Two conditions are associated with the limited range of floats—there are only a finite number of values between 0 and ∞
 - **Overflow**: computation results in a number greater than the largest float = ∞
 - Underflow: computation results in a number that is indistinguishable from 0
 - No wrap-around with floating point numbers
 - Machine accuracy ε such that $1.0 + \varepsilon = 1.0$
 - ε is not the smallest number that can be represented!
 - Every floating point operation has a **round off error** of about ϵ
 - If you are lucky, round off errors may cancel out, but there are circumstances when round off errors are cumulative