
Computer Arithmetic &
Computational Errors

James R. Graham
3/19/2009



Types of Problem

• Problems can be ill-conditioned, badly
posed, or sensitive
– In the linear algebra problem tiny changes of

the coefficients produce large changes in the
solutions

• See IDL examples
– This is not the fault of the algorithm



Types of Problem

• Unstable
– Evaluation of exp(x) for x < 0 using Taylor

series is an unstable algorithm
• See IDL example

• Numerical problems only have useful
solutions when we have well-conditioned
problems and stable algorithms.



Representation of Numbers

• Computers calculations involve
– Integers or whole numbers
– Floating point or real numbers

• Numbers represented internally as 1’s & 0’s
– There is nothing natural about base 10

• Base 12, 20, and 60 have been used by humans



Integers
• Computer integers are represented by a finite

number of digits
– E.g, 16 bit signed binary

• -32768 (-215) to 32767 (215-1)
– Numbers outside this range do not exist!

• 9 - 12 = -3
• 83 × 16 = 48
• 5 ÷ 6 = 0
• 32767 + 1 = -32768

– Most languages support a variety of storage
• Unsigned 16-bit integers: 0-65,535 (216-1)
• Long 32-bit signed integers -2,147,483,648 (-231) to

+2,147,483,647 (-231 -1)
• Long long 64 bit unsigned 0-18,446,744,073,709,551,615 (264-1)



Floating Point
• Some early computers supported fixed point

arithmetic
– Essentially integer arithmetic with an imaginary

decimal point
• Floating point numbers are represented as a x10b

– a is the mantissa and b is the exponent
– a is usually written with one  digit to the right of the

decimal and b is usually an integer
– Both a and b have a finite number of digits

• There is a finite number of floating point numbers that can be
represented. 



Floating Point
• Two conditions are associated with the limited

range of floats–there are only a finite number of
values between 0 and ∞
– Overflow: computation results in a number greater than

the largest float = ∞
– Underflow: computation results in a number that is

indistinguishable from 0
• No wrap-around with floating point numbers

– Machine accuracy ε such that 1.0 + ε = 1.0
• ε is not the smallest number that can be represented!
• Every floating point operation has a round off error of about ε

– If you are lucky, round off errors may cancel out, but there are
circumstances when round off errors are cumulative


