HOW TO CREATE A PERSPECTIVE PROJECTION IN IDL

Do the following:

1. Decide where you want the pole of your projection to be. You can define the center in terms of Galactic or equatorial coordinates; we'll talk in terms of Galactic coordinates here as an example. Let the Galactic coordinates of your perspective pole be $\left(g l_{\text {pole }}, b g_{\text {pole }}\right)$.
Your projection pole defines a new spherical coordinate system. A particular position in Galactic coordinates is specified by $(g l, g b)$ and in your new system it is specified by the angles (long,lat). Given ($g l, g b$), you must find (long,lat) using a proper spherical coordinate transformation using the rotation matrix rot that relates your projection to the Galactic one.

To determine the rotation matrix rtot, use our procedure
rmatrix, gl_pole, gb_pole, rtot
2. For your particular point, we have our coordinate conversion procedure
sph_coord_conv, gl, gb, rtot, long, lat
3. The perspective projection represents the your particular position's angular coordinates (long, lat) in terms of linear coordinates on the projection plane x and y, whose origin is the pole of your projection. The origin has sky coordinates $\left(g l_{\text {pole }}, b g_{\text {pole }}\right)$. It's conceptually simpler to think of the projection plane in terms of polar coordinates R and θ, where as usual $R=\left(x^{2}+y^{2}\right)^{1 / 2}$ and $\theta=\operatorname{atan}(y / x)$. Then R is uniquely related to lat and θ to long.
For a stereographic projection,

$$
\begin{equation*}
R=\tan \left(\frac{90 .-l a t}{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\text { long }+ \text { longoffset } \tag{2}
\end{equation*}
$$

where longoffset is a zero point of your own choosing and is a keyword in rmatrix; you can leave it equal to zero. For a gnomic projection, replace equation 1 by

$$
\begin{equation*}
R=\tan (90 .-l a t) \tag{3}
\end{equation*}
$$

For these, you can use our procedure stereographic.pro.

