The Method of Maximum Likelihood

James R. Graham
10/24/2006
Maximum Likelihood

- Experiments select a sample from the parent population
 - Suppose we select N_i points from a Gaussian parent distribution, with mean μ and standard deviation, σ
 - The probability of making any single observation, x_i, is

$$P_i = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x_i - \mu}{\sigma} \right)^2 \right]$$
Maximum Likelihood

• We do not know μ or σ a priori
 – μ must be derived from the data
 – Denote this estimate μ'

• What expression for μ' gives the maximum likelihood that the parent population has a particular mean given a set of data?
Using Maximum Likelihood to Estimate the Mean

• Suppose the parent population has a mean μ' and constant standard deviation $\sigma' = \sigma$
 – The probability of observing the i-th point x_i is

$$P_i(\mu') = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x_i - \mu'}{\sigma} \right)^2 \right]$$
Estimating μ

- Consider all N observations
 - The probability for observing that set is the product of the individual $P_i(\mu')$

$$P(\mu') = \prod_{i=1}^{N} P_i(\mu')$$

$$= \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \exp\left[-\frac{1}{2} \sum_{i=1}^{N} \left(\frac{x_i - \mu'}{\sigma}\right)^2\right]$$
Estimating μ

- According to the method of maximum likelihood if we compare the $P(\mu')$ for various parent populations with different μ' (all with the same σ)
- The probability is greatest that the data were derived from a population with $\mu' = \mu$
 - We assert that the most likely parent population is the correct one
Calculating the Mean

• Using maximum likelihood the most probable value of μ' is the one which gives the maximum probability, $P(\mu')$
 – Maximize

$$P(\mu') = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \exp\left[-\frac{1}{2} \sum \left(\frac{x_i - \mu'}{\sigma}\right)^2\right]$$

or minimize, X

$$X = -\frac{1}{2} \sum \left(\frac{x_i - \mu'}{\sigma}\right)^2$$
Calculating the Mean

- Find the minimum of X by computing the derivative

\[
\frac{\partial X}{\partial \mu'} = -\frac{1}{2} \frac{\partial}{\partial \mu'} \sum \left(\frac{x_i - \mu'}{\sigma} \right)^2 = 0
\]

\[
= -\frac{1}{2} \sum \frac{\partial}{\partial \mu'} \left(\frac{x_i - \mu'}{\sigma} \right)^2 = \sum \left(\frac{x_i - \mu'}{\sigma} \right) = 0
\]

since the derivative of a sum is the sum of the derivatives
Calculating the Mean

• The most probable value for the mean is given by

\[\sum (x_i - \mu') = 0 \]
\[\sum x_i - \sum \mu' = 0 \]

\[\mu' = \frac{1}{N} \sum x_i \]
Weighting Data

• We assumed that all the data were from the same parent population
 – Suppose some measurements are better than others, some values are drawn from a population with smaller σ_i
• Maximize

$$P(\mu') = \prod_{i=1}^{N} \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) \exp \left[-\frac{1}{2} \sum \left(\frac{x_i - \mu'}{\sigma_i} \right)^2 \right]$$
The Weighted Mean

• Maximizing the probability is equivalent to minimizing the argument in the exponential

$$-\frac{1}{2} \frac{\partial}{\partial \mu'} \sum \left(\frac{x_i - \mu'}{\sigma_i} \right)^2 = \sum \frac{x_i - \mu'}{\sigma_i^2} = 0$$

$$\mu' = \frac{\sum w_i x_i}{\sum w_i}, \quad w_i = 1/\sigma_i^2$$

• The most probable value of the mean is the \textit{weighted} (inversely by the variance) mean
How to Fit a Straight Line

• Suppose our data, \(y_i \), are drawn from a population such that

\[
y(x) = a_0 + b_0 x
\]

• For any \(x_i \) we can calculate the probability of making the observation \(y_i \) as

\[
P_i = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 \right]
\]
Straight Line Fit

- The probability for making the observed set of measurements is the product

$$P(a_0, b_0) = \prod_{i=1}^{N} P_i$$

$$= \prod \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) \exp \left[-\frac{1}{2} \sum \left(\frac{y_i - y(x_i)}{\sigma_i} \right)^2 \right]$$
Straight Line Fit

• Similarly, the probability for making the observed set of measurements given coefficients, \(a\) and \(b\) is

\[
P(a, b) = \prod \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) \exp \left[-\frac{1}{2} \sum \left(\frac{\Delta y_i}{\sigma_i} \right)^2 \right]
\]

\[
\Delta y_i = y_i - a - bx_i
\]
Straight Line Fit

• The product term is a constant, independent of a and b

 – Maximizing $P(a, b)$ is equivalent to minimizing the sum of the exponential

$$
\chi^2 \equiv \sum \left(\frac{\Delta y_i}{\sigma_i} \right)^2
$$

$$
= \sum \frac{1}{\sigma_i^2} (y_i - a - bx_i)^2
$$
Minimizing χ^2

- To find a and b which corresponds to the minimum χ^2

\[
\frac{\partial}{\partial a} \chi^2 = \frac{\partial}{\partial a} \left[\frac{1}{\sigma^2} \sum (y_i - a - bx_i)^2 \right] \\
= -\frac{2}{\sigma^2} \sum (y_i - a - bx_i) = 0
\]

\[
\frac{\partial}{\partial b} \chi^2 = \frac{\partial}{\partial b} \left[\frac{1}{\sigma^2} \sum (y_i - a - bx_i)^2 \right] \\
= -\frac{2}{\sigma^2} \sum x_i (y_i - a - bx_i) = 0
\]
Minimizing χ^2

- These can be rearranged to find pair of simultaneous equations for a and b which corresponds to the minimum χ^2

\[
\sum y_i = aN + b \sum x_i \\
\sum x_i y_i = a \sum x_i + b \sum x_i^2
\]
Minimizing χ^2

- Solving these of simultaneous equations

$$a = \frac{1}{\Delta} \begin{vmatrix} \sum y_i & \sum x_i \\ \sum x_i y_i & \sum x_i^2 \end{vmatrix}$$

$$b = \frac{1}{\Delta} \begin{vmatrix} N & \sum y_i \\ \sum x_i & \sum x_i y_i \end{vmatrix}$$

$$\Delta = \begin{vmatrix} N & \sum x_i \\ \sum x_i & \sum x_i^2 \end{vmatrix}$$