Steps to Photometry

James R. Graham

10/10/2006
Step 1: The Photon Path
Spectrum of Vega
Scattering & Absorption by the Earth’s Atmosphere

![Graph showing atmospheric transmission vs wavelength](image-url)
Mirror Reflectivity

![Mirror Reflectivity Graph](image-url)

Reflectivity vs. Wavelength (μm)
Filter Transmission
Detector Efficiency
\[
\int_{v_1}^{v} \frac{\eta_v F_v}{h \nu} d\nu = 5.88 \times 10^{10} \, \gamma \, s^{-1} \, \text{cm}^{-2}
\]
Step 2: Systematic Errors

- Imaging detectors suffer from a number of errors that must be corrected before the data can be used for photometry.
- Goal is to make the DNs from the FITS files proportional to the brightness of the astronomical source.
Bias & Dark Current

• Even a zero second exposure gives non-zero DN
 – Dark current masquerades as real signal
 – Bias & dark current can be subtracted either by
 1. Take a dark frame of the same exposure time as the science image—takes care of bias too, or
 2. Take an image of blank sky—takes care of bias, dark & can be used to subtract the sky brightness! (can be hard to find blank sky)
Flat Field

- Every pixel in the detector array has a slightly different response to light
 - Some pixels are more efficient than others
- Need to correct for pixel-to-pixel variations by constructing a flat field
 - Make a flat field by observing a uniform source, e.g., the twilight sky
 - *Divide dark-subtracted images by the flat field*
Photometry

• The light from a star is spread over several pixels
• How do we sum the light to get a measure of the total signal from the star?
 1. Identify the location of the star (RDPIX)
 2. Select the associated pixels by making a mask
 3. Sum up the light (TOTAL)
 – Subtract the sky background if necessary
$R = \sqrt{x^2 + y^2}$
\[R = \sqrt{(X - X_0)^2 + (Y - Y_0)^2} \]
Step 3: Modeling the Noise

- What is the SNR of a given observation?
- How do I choose and optimize the photometric parameters
 - Exposure time required?
 - Aperture diameter?
 - Location and size of sky annuli?
How to Begin

• Write down an expression for the signal and use error propagation to find the noise
 – Express results as signal-to-noise ratio vs. photometric parameters
The Model

- The purpose is to *estimate* the noise contributions
 - Often getting the answer to within a factor of two is fine
 - Make simplifying assumptions—so long as you can justify them
A Photometric Model

• What parameters describe the measurement?
A Photometric Model

- **Star**
 - Brightness
 - Center \((x_0, y_0)\)
 - Width \((\sigma)\)
- **Sky background in annulus**
 - \(B\)
- **Detector**
 - \(QE,\) readnoise, dark current
- **Aperture sizes**
 - \(r_1, r_2, r_3\)
Photometric Model

- Write down an expression for the signal, S_i, in units of photoelectrons
 - In an individual pixel
 \[
 S_i = F_i + I_i + B_i + E_i
 \]
 - F_i is the stellar signal $= f_i t$ at pixel i [e$^-$]
 - Different for every pixel
 - I_i is the dark charge $= i_i t$ [e$^-$]
 - Varies from pixel to pixel, for SNR model assume constant
 - B_i is the sky background $= b_i t$ assumed uniform [e$^-$]
 - Varies from pixel to pixel, for SNR model assume constant
 - E_i is the readout electronic offset or bias [e$^-$]
 - Varies from pixel to pixel, for SNR model assume constant
The Stellar Signal

- The stellar signal is found by subtracting the background from S_i and summing over the N pixels that contain the star
 \[F_i = S_i - (I_i + B_i + E_i) \]
 \[
 F_N = \sum_{i=1}^{N_1} F_i = \sum_{i=1}^{N_1} S_i - (I_i + B_i + E_i)
 \]
 \[
 N_1 = \pi r_1^2
 \]
- Error in F_N is due to noise in the signal itself, F_N
- Noise due to dark charge, I
- Noise from the background, B
- The read out noise σ_{RO}
Noise Sources

\[F_N = \sum_{i=1}^{N_1} F_i = \sum_{i=1}^{N_1} \left[S_i - (I_i + B_i + E_i) \right] \]

\[\sigma_F^2 = F_N + \frac{N_1 (B_i + I_i + \sigma_{RO}^2)}{\text{Signal Noise}} + \frac{N_1 (B_i + I_i + \sigma_{RO}^2)}{\text{Noise within } r_1} + \frac{N_1 (B_i + I_i + \sigma_{RO}^2)}{\text{Noise within } r_2 < r < r_3} \]

\[N_1 = \pi r_1^2, \quad N_{23} = \pi r_3^2 - \pi r_2^2 \]

- How do we choose \(r_1, r_2, r_3 \)?
 - Signal increases with \(N_1 \)
 - Noise increases with \(N_1 \) and decreases with \(N_{23} \)
Signal-to-Noise

How do we choose r_1, r_2, r_3?

- Signal increases with N_1
- Noise increases with N_1 and decreases with N_{23}
An Example

• Suppose the stellar signal has a 2-d Gaussian shape

\[F_i = \frac{F_0}{2\pi\sigma^2} \exp \left[-\frac{1}{2} \left(\frac{r_i}{\sigma} \right)^2 \right], \quad r_i^2 = (x - x_0)^2 + (y - y_0)^2 \]

\[F_N = \int_0^\infty 2\pi r F_i dr \]

– This tells us how \(F_N \) changes with aperture radius
Star Profile
SNR vs. r_1

- $F_0 = 100 \text{ e}^-$
- $B_i = 100 \text{ e}^-$
- $I_i = 0 \text{ e}^-$
- $\sigma_{RO} = 10 \text{ e}^- \text{ rms}$
- $N_{23} >> N_1$