Spectrograph Basics

James R. Graham
11/14/2006
Dispersive Spectrometers

- Dispersive spectrometers are a class of instruments that encode wavelength as position on a focal plane detector
- Dispersion can be caused by refraction or diffraction
- Key element is
 - Prism \(dn/d\lambda \neq 0 \)
 - Grating
- Gratings are favored
 - Flexible
 - Transmission or reflection
 - Groove spacing
 - Plane or powered surface
 - Efficient
 - Grating can be blazed
 - Lightweight
Spectrometers as Imagers

• A spectrometer is fundamentally a device which makes an image of a source
 – The position of the image of the source depends on wavelength
• Typically the spectrometer makes an image of an aperture or slit
 – In the solar spectrometer, the spectrometer makes an image of the light exiting an optical fiber
• The location and size of the image is determined jointly by the laws of geometric optics and the grating equation
Fiber source \(d = 100 \, \mu m \)

Filter wheel

Collimator \(f = 179 \, mm \)

Grating \(\theta_g = 64.5^\circ \)
\(\sigma = 12.5 \, \mu m \)

Camera \(f = 200 \, mm \)

CCD 13 \(\mu m \) pixels

2\(\theta = 10^\circ \)

Fiber source \(d = 100 \, \mu m \)

Collimator \(f = 179 \, mm \)

Grating

Camera

CCD

Fiber source
For a reflection grating α and β have the same sign if they are on the same side of the grating normal. For a transmission grating they have the same sign if the diffracted ray crosses the normal.

$$m\lambda = \sigma(\sin \alpha - \sin \beta)$$

- for transmission
+ for reflection
Condition for Constructive Interference

\[m\lambda = \sigma (\sin \alpha \pm \sin \beta) \]
Orders

Transmission grating $1/\sigma = 600 \text{ mm}^{-1}$
Positional Encoding

- The angle is given by the grating equation and the position set by the camera focal length

\[m \lambda = \sigma (\sin \alpha + \sin \beta) \]
\[\beta = \arcsin\left(\frac{m \lambda}{\sigma} - \sin \alpha\right) \]
\[p = f_{cam} \tan(\beta) \]
Mapping Wavelength to Angle

- Holding α and m constant, β varies with λ

$$\beta = \arcsin\left(\frac{m\lambda}{\sigma} - \sin\alpha\right)$$
Mapping Wavelength to Position

- Holding α and m constant, p varies with λ

$$p = f_{\text{CAM}} \tan(\beta - \beta_0)/\Delta p$$

$f_{\text{CAM}} = 200$ mm

$\Delta p = 13$ μm
Dispersion

- Dispersion gives the angular spread of diffraction, $\delta \beta$, for a source with wavelength spread, $\delta \lambda$
 - Start with the grating equation and hold the angle of incidence, α, and the order, m, constant
 \[
 m \lambda = \sigma (\sin \alpha + \sin \beta)
 \]
 \[
 m \delta \lambda = \sigma \cos \beta \delta \beta
 \]
 \[
 \left(\frac{\partial \beta}{\partial \lambda} \right)_{\alpha, m} = \frac{m}{\sigma \cos \beta}
 \]
Dispersion

- Over a limited range of wavelength dispersion is \(\approx \) constant
 - Linear relation between wavelength & position

\[
\left(\frac{\partial \beta}{\partial \lambda} \right)_{\alpha,m} = \frac{m}{\sigma \cos \beta}
\]
Dispersion

- With higher dispersion it is possible to distinguish closely spaced wavelengths
- High dispersion corresponds to
 - High order (large m)
 - Narrow grooves/high groove density
 - Large β ($\approx \pi/2$)

$$\left(\frac{\partial \beta}{\partial \lambda} \right)_{\alpha,m} = \frac{m}{\sigma \cos \beta}$$
Spectral Resolution

\[\Delta \alpha = \Delta s / f_{\text{col}}, \quad \Delta \beta = \left(\frac{\partial \beta}{\partial \alpha} \right)_{\lambda} \Delta \alpha, \quad \Delta p = f_{\text{cam}} \Delta \beta \]
Spectral Resolution: the Diffraction Limit

• Even if the input is a point source, the image has a finite size on the CCD array, Δp, due to diffraction

 – The angular size of camera images, $\delta\beta = \lambda/D_{\text{cam}}$, limits the spectral resolution

 \[
 \delta\lambda = \frac{\partial \lambda}{\partial \beta} \delta\beta = \frac{\sigma \cos \beta}{m} \delta\beta
 \]

 \[
 \delta\beta = \frac{\lambda}{D_{\text{cam}}}
 \]

 \[
 R = \frac{\lambda}{\delta\lambda} = \frac{(\sin \alpha + \sin \beta)}{\cos \beta} \frac{D_{\text{cam}}}{\lambda} \approx 2 \frac{D_{\text{cam}}}{\lambda} \tan \theta_B
 \]
Spectral Resolution: the Diffraction Limit

- $D_{\text{cam}} = 75$ mm
- $\tan \theta_B = 2$
- $\lambda = 0.632 \, \mu m$

$R_{DL} \approx 470,000$
Slit Limited Spectral Resolution

\[
\Delta \alpha = \Delta s / f_{\text{col}}, \quad \Delta \beta = \left(\frac{\partial \beta}{\partial \alpha} \right)_\lambda \Delta \alpha, \quad \Delta p = f_{\text{cam}} \Delta \beta
\]
Slit Limited Spectral Resolution

• Generally, the source is not a point
 – If the extent is greater than the diffraction blur then the spectrometer resolution “slit limited”

\[
\delta \alpha = \frac{\delta s}{f_{\text{col}}}
\]

\[
\delta \beta = \left(\frac{\partial \beta}{\partial \alpha} \right)_{\lambda,m} \delta \alpha = \frac{\cos \alpha}{\cos \beta} \delta \alpha = \frac{\cos \alpha}{\cos \beta} \frac{\delta s}{f_{\text{col}}}
\]

\[
\delta \beta = \left(\frac{\partial \beta}{\partial \lambda} \right)_{\alpha,m} \delta \lambda = \frac{m}{\sigma \cos \beta} \delta \lambda
\]

\[
\frac{m}{\sigma \cos \beta} \delta \lambda = \frac{\cos \alpha}{\cos \beta} \frac{\delta s}{f_{\text{col}}}
\]

Hence, \(R_{\text{SL}} = \frac{\lambda}{\delta \lambda} = \frac{\sin \alpha + \sin \beta}{\cos \alpha} \frac{f_{\text{col}}}{\delta s} \)

Which is bigger \(R_{\text{DL}} \) or \(R_{\text{SL}} \)?