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The purpose of this lab is, broadly speaking, to learn radio interferometry—the basis for most

of modern radio astronomy and, we predict, forefront future IR and optical astronomy. We’ll cover

the basic principles, the interferometric fringe, the response to a point source, and the response to

an extended source (which is the basis of high-angular resolution mapping with interferometry).

We will employ least-squares fitting and Fourier transforms to measure accurate positions for a few

sources and also accurate angular diameters for the Sun and Moon. This lab runs for four weeks

and clearly there’s a lot of new material!

1. GOALS

• Learn how diffraction theory applies to a real radio interferometer. Fringes, their amplitudes

and phases. The fringe as a ‘giant sine wave in the sky; and the fringe as a ‘giant DSB mixer

in the sky’.

• Fourier transforming the fringe; Fourier filtering the fringe.

• Obtain horizon-to-horizon data on our various astronomical sources—point sources, and the

Sun and Moon.

• VLBI nonlinear least-squares fringe fitting to determine the most accurate source declination.

• Use nonlinear least-squares fitting to obtain accurate diameters for the Sun and Moon. This

illustrates the general Fourier transform relationship between interferometer response and sky

brightness.

•

2. SCHEDULE

1. Week 1 (4 Mar-10 Mar): Each person uses rotation matrices to calculate when objects of

interest are up. Each group observes the Sun for a short time to confirm that you see fringes.

Each group does a horizon-to-horizon observation of a point source, which requires writing

an observing script to run automatically.

Each person calculates Fourier power spectra of the Sun data and also the point-source data.

She/He calculates the range of expected local fringe frequencies (equation 12) and compares

the observed spectra with these expectations. Be ready for show and tell!
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2. Week 2 (11 Mar-17 Mar): Each group observes horizon-to-horizon the Sun and, if possible, the

Moon with the interferometer. Each person derives accurate declinations for the point-source

data using least-squares fitting as outlined in §5.

3. Week 3 (18 Mar-31 Mar): Finish the Moon observations. Spring break. Each person derives

accurate angular diameters for the Sun and Moon using least-squares fitting as outlined in

§6.

4. Week 4 (1 Apr-7 Apr): Each person finishes all calculations and writes (and hands in!) the

lab report.

3. OUR INTERFEROMETER

With our interferometer, which operates at about 11 GHz, our attention focuses on small

sources. Our interferometer has a relatively short baseline and the fringe spacing is larger than the

size of all sources (except the Sun and Moon). So for our interferometer all of these sources look

like “point sources”, for which all the radiation appears to come from a single point—just like a

star in optical astronomy. The output of the interferometer is a sinusoidal-like signal called the

“fringe”. All of the information resides in the frequency, amplitude and phase of the fringe.

If you know the baseline, the fringe properties are direct indicators of the point-source declina-

tion. With our 10-m baseline B we can get a fringe spacing λ
B ∼ 10′, and with a horizon-to-horizon

measurement we can measure the declination 100 times more accurately. In addition, we can

achieve partial angular resolution on the Sun and Moon and measure their diameters to a fraction

of a percent—this turns out to be more interesting than it sounds!

We have a multiplying interferometer: the signals from the two telescopes (that’s E1 and E2)

are multiplied together, using one of the mixers you used in the previous lab, producing the product

E1E2.
1 We repeatedly measure and record the time average 〈E1E2〉 over a suitable interval (a few

seconds). Using the cross product is important because its average value is zero unless there’s a

source, so any detected signal has to come from the sky instead of the instrument. So when we

look at a source, the fringe amplitude has no zero offset and the amplitude is directly proportional

to the source flux (if it’s a point source).

4. CONTINUUM SOURCES

For the first part of the lab we will concentrate on measuring source positions. Our telescopes

are small, so there are only a few sources that are powerful enough for us. The strongest continuum

1This multiplication is equivalent to adding the signals, squaring [(E1 + E2)
2 = E2

1 + E2

2 + 2E1E2], and then

subtracting the two self-products E2

1 and E2

2 .
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sources are listed in the table below. You’ll need to precess the coordinates to the current equinox.

If you don’t, the incorrect r.a.’s will affect your fits. To do the precession, use the GSFC IDL

procedure precess.

Three of these sources are double (they are marked with the footnote a). The two componnts

are an HII region (a hot young star ionizes gas in its vicinity; the ionized gas produces radio

continuum) and (2) a supernova remnant (a hot young star lived fast and died young); both stars

were formed coincidentally in a cluster). The position you derive is a weighted average of the two

sources.

Not all of these sources are suitable for accurate declination measurement. To understand why,

look at equation 10 and think about it!

name r.a.(2000) dec(2000) SJy

W3a 02h27m04.10s +61◦52′27.1′ ∼ 105

3C144 (Crab Nebula) 05h34m31.95s +22◦00′52.1′′ ∼ 496

Orion Nebula 05h35m17.3s −05◦23′28′′ ∼ 340

3C274 (Virgo A) 12h30m49.423s +12◦23′28.04′′ ∼ 34

M17 18h20m26s −16◦10.6′ ∼ 500

W43 18h47m58.0s −01◦56′43′′ ∼ 200

W49a 19h10m17s +09◦06.0′ ∼ 80

W51a 19h23m42.0s 14◦30′33′′ ∼ 116

3C405 (Cygnus A) 19h59m28.357s +40◦44′02.10′′ ∼ 120

3C461 (Cas A) 23h23m24s +58◦48.9′ ∼ 320

SUN varies varies

MOON varies varies

————(a) This source has multicomponent angular structure

4.1. Useful IDL Procedures for TIME, LST, SUN, and MOON

4.1.1. CIVIL TIME and LST Procedures

These routines are based on GSFC ct2lst.pro. You need to know your latitude and longitude

to calculate LST. For NCH:

nlat = 37.8732d0◦ elong = −122.2573d0◦ (1)

Here, nlat means ‘north latitude’ and elong means ‘east longitude’ (measured from Greenwich

towards the East, which is why it’s negative for us). If you want to calculate the fringe frequency

using ugdoppler, then you need to calculate the Doppler shift separately for the two telescopes.
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The difference between their two positions needs to reflect the interferometer baseline components

in the e-w and n-s directions. This is why we made nlat and elong double precision.

ct = SYSTIME() gives current local civil time as a string

ct_sec_since = SYSTIME(/sec) gives seconds elapsed since 1 January 1970 UTC

cd_julian = SYSTIME(/julian, /utc) gives current julian day (which

contains the current time, too--it’s not just an integer

number. the /utc is required for it to give julian date relative

to greenwich, which is the only one that means anything.

LST -- prints LST right now on the screen

lstnow = LSTNOW() -- returns the current LST

lst_julian = ILST( julian=juldate) -- returns the LST for the specified

Julian day

4.1.2. Julian Day Procedures

Remember: the Julian day begins at noon in Greenwich. UTC is the time in Greenwich, which

is 8 hours ahead of (larger than) PST. The Julian day is a double-precision float: it contains the

time as the fractional part of the day. It’s not just an integer day number.

julian_now = SYSTIME(/julian, /utc) gives current Julian day. The /utc

is required for it to give julian date relative to greenwich,

which is the only one that means anything.

local_now = SYSTIME() gives current local ltime as a string

local_now_sec = SYSTIME(/sec) gives seconds elapsed since 1 January 1970

CALDAT, Julian, Month [, Day [, Year [, Hour [, Minute [, Second]]]]]

Given the Julian day (which is defined relative to Greenwich),

this returns the civil time at Greenwich.

julian = JULDAY(Month, Day, Year, Hour, Minute, Second)
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Given the civil time at Greenwich, this returns the Julian day.

modified_julian_day = MJD2JD( julian_day, /reverse)

julian_day = MJD2JD( modified_julian_day)

4.1.3. Sun, Moon, and Other Procedures

ISUN (see the documentation). An easier versun of sunpos.

SUNPOS, jd, ra, dec, longmed, oblt, RADIAN = radian

IMOON (see the documentation. An easier version of moonpos, and ***most

importantly*** imoon corrects for parallax!

MOONPOS, jd, ra, dec, dis, geolong, geolat, RADIAN = radian

EQ2AZ.PRO, EQTOAZ.PRO, HD2AA.PRO, AA2HD.PRO all convert from equatorial

to alt//az or vice-versa. See the documentation.

4.2. The Point Sources

Our goal is to measure the absolute declinations as accurately as possible. Declinations can

be measured on an absolute basis with interferometry by least-squares fitting the fringe phase to

the hour angle; see §5 and equation 10 below. With our fringe spacing of ∼ 10′ we might be able

to measure declinations to an accuracy ∼ 20′′—maybe better.

Optionally—if you’ve done everything else and it was so easy you’re bored—you can try to

measure the difference in right ascension between two sources. We can’t measure the absolute right

ascensions because the right ascension coordinate has no naturally-determined zero point; rather,

its zero point is defined arbitrarily by convention2 (and it changes with time, too). In contrast,

declination has a naturally-determined zero point: the equator. But we can measure the relative

right ascension of one source with respect to another with high accuracy. At least we can do this

in principle; in practice it’s harder than measuring only the declinations.

We’ll want each group to pick a source and obtain a horizon-to-horizon observation of the

fringes. We also want each group to use a somewhat different observing frequency, with the goal of

2What’s the convention? The zero point is defined to be the position of the Sun when it crosses the equator on

March 22. This moves by about 1 arcmin per year.
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finding frequencies that have less interference. Let’s try 11.5, 11.7, 11.9, 12.1, and 12.3 GHz for our

five groups. Organize yourselves! If you have time, groups can compare results to see if you can get

the differences in right ascensions (we’ve never successfully done this before!). And we’ll want each

person to measure the source’s declination by least-squares fitting the horizon-to-horizon track of

fringe phase and amplitude. Compare your results with other members of your group. Help each

other out, but each person should write her/his own software.

There are some considerations in picking sources, and we will save you some frustration by

telling you about them beforehand:

1. The fringe frequency depends on cos δ. This means that you don’t measure δ directly, but

rather cos δ. Note our discussion in §5.2 about the desireability of solving for
[
By

λ cos δ
]

instead of [cos δ].

2. Southern sources present a minor problem for horizon-to-horizon tracks because of the pres-

ence of the Campanile—you have to discard some data..

3. We have been working on the telescope drives, and we can’t do sources with declinations

larger than our latitude.

4. Our observing frequency is in the TV satellite band. Geostationary TV satellites sit in the

southerly skies and generate strong signals that can enter the dish sidelobes and produce

fringes.

4.3. The Sun and Moon

The Sun and Moon are special cases, for two reasons. First, their positions change from day to

day—and for the Moon, the change in just an hour is significant3. Second, they are both extended

sources, not point sources. This causes their fringe amplitudes and phases to change with time, in

a manner that depends on their brightness distribution4; this makes the determination of accurate

positions a bit tricky, but we’ll ignore that detail for now.

You can get the Sun and Moon positions from our IDL procedures isun and imoon. For the

Moon, you should be aware that it is nearby so that you have to correct for your location on the

Earth’s surface. The parallax effect is far greater for the Moon than the Sun—so large that unless

you correct for it, the Moon will probably lie outside the telescope main beam! imoon takes care of

3Use what you already know to make an order-of-magnitude estimate of how far the Sun and Moon move in one

day!

4These changes in fringe properties are exactly what’s necessary to map the sources!
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this automatically unless you tell it not to5. A previous undergrad lab TA, Erik Shirokoff6, worked

very hard to get the moon position, including parallax, really right; he wrote imoon. We think it

works. We hope it works!

Given these difficulties, why bother with the Sun and Moon? Because they are bright. We

include them because they provide huge signals, which is ideal for testing your observing setup and

your reduction software. In particular, the Sun is so bright that you’ll get a huge signal/noise and

you should be able to estimate an accurate declination in the first few minutes. And if you don’t

see the Sun, you know you’re doing something wrong!

4.4. Some Astrophysics

Here’s a bit of physical information. M17 (“M” for Messier), W3 (“W” for Westerhout), W43,

W49, W51, and Orion are HII regions—places where hot stars have produced warm (T ∼ 104

K) ionized gas, where the electrons flying past the protons get deflected and produce free-free

(bremsstrahlung) radiation. The Sun also emits free-free radiation, just like the HII regions.

The other sources, and sources paired with some of the HII regions, radiate in synchrotron

radiation—relativistic electrons gyrating in a magnetic field. For these sources, the source des-

ignation 3CXYZ designate source number XYZ from the third Cambridge (England) catalog; in

the early 1960’s, Cambridge radioastronomers produced the first reliable comprehensive catalog

of strong radio sources in the Northern hemisphere. The Crab Nebula (also called Taurus A) is

powered by the Crab pulsar, and is a ∼ 1000 yr-old supernova remnant in the Galaxy about 1

kpc distant. Cas A is another supernova remnant, not powered by a pulsar; rather, the relativistic

electrons are produced behind the fast shock wave produced by the explosion. Cas A is ∼ 300

yr old and about 2.5 kpc distant. Both of these supernova remnants are expanding rapidly, as

befits their young ages, and Cas A (in which a pulsar does not constantly replenish the electrons)

is gradually getting dimmer.

In the external galaxies, the ultimate source of the electrons involves acceleration of electrons

near the black hole at the center; the electrons are then spewed out to extragalactic space in narrow

collimated jets, and produce large “emission lobes” at the end of the jets. Virgo A is a “peculiar”

elliptical galaxy about 11 Mpc distant, while Cygnus A is a giant elliptical galaxy 220 Mpc distant.

Cyg A is a powerful radio source—it’s 105 times further than Cas A and just as bright! The study

of the mechanism by which this enormous power is generated, which implies enormous energies, has

led to the current awareness of and interest in high-energy astrophysics. For information on both

5If you specify the geocentric option, imoon gives the lunar position as seen from the center of the Earth. You

don’t want to use this option!

6Erik became a Berkeley grad student in physics, later a Caltech postdoc in astrophysics, now runs his own lab

at University of Chicago (http://kicp.uchicago.edu/ shiro/)
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types of source and some beautiful pictures, see chapters 10 and 13 in Galactic and Extragalactic

Radio Astronomy, second edition (1988, ed. G.L. Verschuur and K.I. Kellermann).

The Moon is a completely different story. Contrary to what you might expect, at radio

wavelengths it doesn’t shine by reflected sunlight. Rather, its emission is blackbody radiation from

its solid surface. Its surface is heated by sunlight, and at short wavelengths (but not at long ones)

there’s a big difference between the temperature of the sunlit and dark parts of the Lunar surface.

You can tell a lot about its surface properties from the polarization of the radiation and also from

its time variability as the surface heats up from sunlight and cools off from darkness—just like the

Sahara.

5. MEASURING ACCURATE DECLINATIONS

We measure declinations from the fringe frequency, which depends on the baseline orientation,

baseline length, declination, and hour angle (all these go into the projected baseline). If we observe

a source horizon-to-horizon, the projected baseline changes a lot, and so does the fringe frequency.

We first do a ‘sanity check’, taking the Fourier transform of the data to see if we see the fringe and

measure its range of frequencies. If it all looks good, we take those data and do a least-squares fit

to derive the most accurate declination from our data.

5.1. Getting the Data

FIRST WEEK: Before doing the weak sources in the Table, do the Sun for a much shorter

time, say an hour. This will give you confidence that the system works (or so we hope). There

should be an easily-recognizable signal that you can look at visually, think about, and derive the

approximate declination with pencil and paper. Then later you can write software to do the same,

and make sure you get the right answer. Also, during this first week, do the horizon-to-horizon

track of one of the sources from the Table.

Below we’ll distill the formulae given in the appendix of the recommended reference to the

nice, straightforward case of an east-west baseline of length B, for which the only nonzero baseline

component is By. Our interferometer has an east-west baseline (approximately), so our distilled

formulae will be applicable (approximately) to your measurements.

5.2. The Fringe

The two interferometer telescopes have different distances from the source. The difference can

range from zero (if the source is overhead) to nearly the the full baseline (if the source is near the

horizon). This distance difference is tiny compared to the distance to the source, but it’s important!
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It’s convenient to think of the different distances in terms of relative path delay in time units

for the two telescopes; we call this the geometrical path delay τg. But don’t forget! The signals

travel through a lot of electronics before they get multiplied and the two paths aren’t of equal

length, so there is an additional relative delay from the difference in cable length τc. The total

relative delay is the sum of the two,

τtot = τg(hs) + τc . (2)

We explicitly include the fact that τg is a function of time—that is, the hour angle of the source

hs. In contrast, τc is independent of time (unless somebody changes the cable setup. . . ).

We don’t know τc (but the least-squares process can tell us what it is). However, we do know

τg because it’s just geometry—the geometry discussed in the reading. For the east-west baseline,

we have

τg(hs) =

[
By

c
cos δ

]

sinhs . (3)

The output of the interferometer is the product of what the two telescopes see. If they are

looking at a monochromatic source then the voltages for the two telescopes are

E1(t) = cos(2πνt) (4)

E2(t) = cos(2πν[t+ τtot]) . (5)

and the product is the interferometer fringe output

F (t) = cos(2πνt) cos(2πν[t+ τtot]) . (6)

There’s a trigonometric identity that allows us to write this in terms of the sum and difference of

the two arguments7. The sum term varies rapidly with time and averages to zero; it’s the difference

term we want, so if we exclude the sum term (and forget about the factor 1
2) we get

F (hs) = cos(2πν[τg(hs) + τc]) . (7)

We want to use a least-squares fit to find the values of quantities that comprise the argument

of the cosine. If you have done least-squares fitting before (and if you remember anything about

7cos(A) cos(B) = 1

2
[cos(A−B) + cos(A+B)]
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it!) you’ll realize that the straightforward least-squares fitting technique won’t work on this type of

problem. We can simplify things for the fitting process by using another trig identity8 and writing

this as the sum of two trig functions

F (hs) = cos(2πντc) cos

[

2πν

(
By

c
cos δ

)

sinhs

]

− sin(2πντc) sin

[

2πν

(
By

c
cos δ

)

sinhs

]

. (8)

This may not look simpler! But it is, because for the purposes of least-squares it involves only

a single variable in the trig function arguments—the combination of variables
(
By

c cos δ
)

(we are

assuming that we know the right ascension well enough to get a good value for hs).

To proceed with least-squares, replace cos(2πντc) and sin(2πντc) by two “unknown constants”

A and B, respectively; assume that they are unrelated and solve for them using the standard

least-squares process. Also, it’s convenient and intuitive to make the substitution

ν

(
By

c
cos δ

)

=

(
By

λ
cos δ

)

(9)

which expresses the delay in units of wavelength, and thus the “number of turns” or phase. These

substitutions give the Fringe Amplitude for a point source

F (hs) = A cos
[

2π
(
By

λ cos δ
)

sinhs

]

−B sin
[

2π
(
By

λ cos δ
)

sinhs

]

. (10)

Let’s take a moment and reflect on this complicated-looking equation, focusing on just the first

term (because the second is identical except it’s a sine instead of a cosine). We want to develop the

concept of a local fringe frequency ff . The argument of the cosine is a constant C =
[

2π
(
By

λ cos δ
)]

multiplied by sin(hs). Now hs is the hour angle and increases monotonically with time, so we can

regard it as time9. Now C is multiplied not by hs itself, but rather by sin(hs), which is a nonlinear

function of time. The product C sin(hs) is the argument of the cosine term and makes it oscillate

back and forth, but at a frequency that depends on time as hs changes.

5.3. The Local Fringe Frequency

This leads to the concept of the local fringe frequency. To see this, expand the hour angle term

sin(hs) into a Taylor series centered on the current hour angle of the source hs:

8cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

9Except that its units are radians. This is no problem: 24 hours is 2π radians.
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sinh = sin(hs) + ∆h
d sin(h)

dh

∣
∣
∣
∣
hs

= sin(hs) + ∆h cos(hs) (11)

The local fringe frequency is contained in the second term because, for a small region around hs in

equation 10, F (h) varies as ff ∆h, where the local fringe frequency ff is

ff =
C

2π
cos(hs) =

(
By

λ
cos δ

)

cos(hs) . (12)

This is the local fringe frequency in cycles per radian on the sky. If you want to turn it into cycles

per hour coming out of the interferometer’s multiplier, multiply by dhs

dt = 2π
24 ; or cycles per minute,

multiply by 2π
60×24 ; etc. At the meridian (hs = 0), the fringe frequency is [ff =

(
By

λ cos δ
)

≈

0.029 cos δ] cycles per second and the period is 1
ff

= 35
cos δ seconds. (This assumes By =10 m and

λ = 2.5 cm; check these numbers to make sure you understand this calculation!)

Use the above to calculate the range of local fringe frequencies that you should see in your

data. Does it work? Look at the Fourier transform of your data to check! And try Fourier filtering!

5.4. Least-Squares Fitting the Fringe to Get the Declination

Now let’s return to the least-squares solution of equation 10. Make a guess at the proper value

of
[
By

λ cos δ
]

and, also, adopt a value for the right ascension α (required so that you can compute

h from the local sidereal time LST). With this, you know the arguments of the trig functions and

this means that you can solve for A and B using the standard least-squares process; be sure and

save the sum of the squares of the residuals. Then change the guessed-at value of
[
By

λ cos δ
]

and

do it again. Do this a number of times and plot the sum-of-squares versus the guessed-at value

of
[
By

λ cos δ
]

. The best value of δ is where the sum-of-squares is a minimum. What is this? It’s

[brute-force] least-squares! You might try doing the same kind of iteration with the right ascension,

but my guess is that it won’t make much difference. Then use A and B to calculate the cable

length difference τc.

Notice!!! The parameter of interest is the declination δ. In contrast, we suggest solving for

the combination
[
By

λ cos δ
]

. Why is this? When you do the least-squares fitting you need to know

the baseline length, the distance between the telescopes. You have to measure this! And if you do

it wrong, then... well, suppose your measurement of the baseline is too small—by a factor of 100

(because you measured the length in cm instead of m!). Look at the function you fit: it has the

baseline multiplied by cos(δ). cos(δ) can never be larger than one. So if you use a baseline that is

too small in your solution, the best value for cos(δ) might be larger than unity—meaning that no

declination will give a satisfactory solution! The most straightforward way around this is to fit not

for the declination, but for
[
By

λ cos δ
]

, and then after deriving this parameter divide by the baseline
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By to find the best value of cos(δ). This allows cos(δ) to be greater than 1 in your trial fits—which

might be especially important for sources near the equator.

If you do this least-squares reduction for a bunch of sources, you will get all of their declinations.

However, you will find different cable lengths for each source. Clearly, this is a problem because

nobody has changed the setup during your measurements (you hope). The different cable lengths

mean that the adopted right ascensions are not all mutually consistent. You need to change the

relative right ascensions in such a way that the fits all give the same cable delay. This will require

comparing results among groups and doing some iteration. This is a challenge: never before in this

lab have the relative right ascensions been reliably determined. Have fun!

5.5. The Nonlinear Aspect of the Least-Squares Fit

Above, we discussed the technique least-squares fitting for the declination. This is not a

straightforward problem because dF (hs)
dδ is not equal to a constant—rather, it depends on time (i.e.,

hour angle h). This means you have to do what’s called a nonlinear least-squares fit. The general

technique for this is: you guess a value for the declination, expand the equation for F (h) in a

one-term Taylor series about this guess, and solve for the correction. The procedure is discussed in

detail in section 7 of the ‘Lite’ version of the Aficionado’s handout.

We suggested a different technique above, one I call the “brute force technique”. It simply

does the least-squares fitting process by iteration and inspection: you minimize the sum-of-squares

of the residuals yourself instead of by a mathematical procedure. This minimization is exactly

what the least-squares fit does! If there’s only a single variable involved, then it’s straightforward

to use the brute-force technique. But if there’s more than one, then things get complicated rapidly.

This is why we rewrote the equations above so that there was only a single variable involved in the

nonlinear fit.

Which technique will you use: the ‘brute-force’ or the more general one? Why?10

6. MEASURING 1-D BRIGHTNESS DISTRIBUTIONS: THE FIRST STEP OF

MAKING MAPS

When we think of a time-variable signal, we think of frequency as being cycles per second—and

its inverse, the period, is in seconds, the number of seconds that separates adjacent peaks of the

sine wave.

The interferometer projects a giant sine wave on the sky. Its frequency, which changes with

10Answer: You’re not a Berkeley student for nothing! You’re here to learn, and the way you learn is by doing new

things! (And, of course, you probably want a better grade on your lab report. . . )
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position, is measured in cycles per radian—and its inverse, the period, is the angular separation

of adjacent peaks, measured in the angular units of radians. You can, of course, also think of

frequency in terms of cycles per degree or cycles per arcminute, with the corresponding periods

(“fringe separation”) in units of degrees or arcminutes.

When we observe with a range of baseline lengths and orientations, the giant sine waves in

the sky have corresponding ranges of frequencies and orientations. We sample brightness of the

sky in Fourier space. The fringes at each baseline length and orientation have amplitudes and

phases. To recover the brightness of the sky in real, angular space, we measure as many Fourier

components as we can and take their Fourier transform. If we had complete sampling in Fourier

space, we would recover the true brightness distribution. In real life, we have incomplete sampling,

so we recover a distorted representation of the true distribution. There is a whole literature of

techniques for minimizing this distortion, the most prominent being “cleaning” and “maximum

entropy”. Full-fledged research arrays, such as the Very Large Array (VLA) in New Mexico, rely

on these techniques to map the sky.

In our case we have just two dishes along an east-west line. The effective baseline length

changes as the source rises higher in the sky, and if the source is away from declination δ = 0◦ the

orientation of the baseline also changes, at least to some degree. We will map the Sun and Moon,

which never get very far from δ = 0◦, so effectively we have only a 1-d sampling of the source with

a range of baseline lengths.

Figure 1 illustrates this 1-d concept. It presents a generic circular source of uniform brightness

in the sky, which we call the MUN—a bastardization of the MOON and the SUN11. The top panel

shows the MUN in the sky as it really is: the fringes cover the 2-d object. At the bottom, we

integrate along vertical strips to get the 1-d brightness distribution—the vertically-integrated 1-d

equivalent, in which both the brightness distribution and the fringes depend on only one coordinate.

This one coordinate is the horizontal direction in the bottom panel of the Figure. In real life

this is hour angle because we have an east-west interferometer and our source is at low declination—

meaning that the baseline projected on the sky is mainly east-west, the direction of hour angle.

Thus we denote this direction by the letter h.

As the Earth rotates, the source moves through the fringe pattern to give the fringe response

R(hs). For a point source, R(hs) = F (hs) (see equation 10); for an extended source, we have to

integrate over the extent of the source. Let I(h − hs) be the 1-d intensity distribution in the sky.

The source center is the intensity-weighted mean of the position, i.e.

hs =

∫
I(h)hdh

∫
I(h)dh

. (13)

11In truth, it represents neither, because neither the Sun nor the Moon has uniform surface brightness.
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Fig. 1.— The 2-d and 1-d MUN. At the top, we see the situation in the sky as it really is: the fringes cover the 2-d

object. At the bottom, we integrate along vertical strips to get the 1-d brightness distribution and, also, the fringe

amplitude (which goes from –1 to +1).

That is, on the bottom panel of Figure 1, I(h−hs) is the intensity of the source (vertical direction)

and ∆h = h − hs the horizontal coordinate—the hour angle h relative to the hour angle of the

source center hs.

We can express the interferometer response R(hs) using equation 10, which is for a point

source; for an extended source, we imagine I(∆h) as being composed of little slices in hour angle,

with each little slice of the source characterized by its position offset ∆h and its intensity I(∆h),
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so we just integrate:

R(hs) = A

∫

I(∆h) cos

[

2π

(
B

λ
cos δ

)

sinh

]

d∆h+B

∫

I(∆h) sin

[

2π

(
B

λ
cos δ

)

sinh

]

d∆h (14)

Now express cos
[
2π

(
B
λ cos δ

)
sinh

]
in terms of the local fringe frequency (equations 11 and

12), which replaces cos
[
2π

(
B
λ cos δ

)
sinh

]
by a sum of two terms, which we temporarily denote

α and β12. Now, as usual, we use trig identities [cos(α + β) = cos(α) cos(β) − sin(α) sin(β) and

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)]. The first (cosine) term of equation 14 becomes

Rcos(hs) = A cos(α)

∫

I(∆h) cos(2πff∆h) d∆h−A sin(α)

∫

I(∆h) sin(2πff∆h) d∆h (15)

with an equivalent, similar expression for Rsin(hs).

For our source (the MUN), we assume that I(∆h) is symmetric (This also retains our algebraic

sanity.). This means that in the above equation the second term, which is antisymmetric, integrates

to zero. Similarly, the antisymmetric term in the equivalent equation Rsin(hs) also integrates to

zero, so we end up with R(hs) = Rcos(hs) +Rsin(hs), or

R(hs) = F (hs)
︸ ︷︷ ︸

Point−source Fringe

×

∫

I(∆h) cos(2πff∆h) d∆h

︸ ︷︷ ︸

Fringe Modulator

(16)

Note the structure of equation 16. It consists of two factors. The first “Point-source Fringe” term

is identical to equation 10—it’s the response to a point source located at ∆h = 0. The other

modulates (multiplies) this function.

Generally, the modulating function is the Fourier transform of the source intensity distribution

on the sky. Here, we assumed a one-dimensional symmetric source, which means that the sine

portion of the Fourier transform is zero; this is why equation 16 is only a cosine Fourier transform

instead of a full one. More generally, the Fringe Modulator depends on the two-dimensional map

of intensity on the sky, so it’s a double integral instead of a single one.

Figure 2 (top panel) shows two examples of 1-d brightness distributions, a flat and a cosine

distribution. The bottom panel shows the Fourier transforms. Both of the modulating functions are

trig functions. In particular, for the flat distribution the modulating function is
sin(2πffR)

2πffR
. It can

(and does!) go through zero. The locations of these zero points provide crucial information about

the source structure. The zeros occur for ff = n
2R . It’s more intuitive to express the zeros in terms

12where α = 2π
(

B
λ
cos δ

)

sinhs and β = 2πff∆h .
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Fig. 2.— Examples of 1-d brightness distributions and their Fourier transforms. Top panel: the brightness distri-

butions. Bottom: the Fourier transforms (Fringe Amplitude vs. Source Diameter
FringePeriod

). In both, panels, the solid line is

for a flat brightness distribution and the dashed one for a cosine distribution.

of fringe period (equal to 1
ff
): the zeros occur at Period = 2R

n . There’s a zero whenever there’s an

integral number of fringe periods over the source width. This makes perfect sense, because then the

source contributes equally to the negative and positive portions of the fringe and the net integral

is zero.
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7. MEASURING THE DIAMETER OF A CIRCULAR SOURCE

7.1. Theory and Math

Our goal is to measure and compare the diameters of the Sun and Moon. We’ll make the

assumption that the sources are uniformly-bright disks of radius R, which means

I(∆h) =
(R2 −∆h2)1/2

R
(17)

To obtain the theoretical modulating function MFtheory, you use the integral in equation 16, which

is

MFtheory =
1

R

∫ R

−R
(R2 −∆h2)1/2 cos(2πff∆h)d∆h (18)

If you want, you can do this analytically by substituting ∆(R cos(θ) for ∆h; you end up with a

Bessel function.

We are running a lab class, not a math class, so let’s proceed by doing the integral numerically!

To accomplish this, split I(∆h) into 2N +1 tiny little slices (the total number is odd, which makes

the slices symmetric about ∆h = 0). Each slice has width δh = R
N , and ∆hn = nδh, where n runs

from −N to +N . Then the integral becomes a sum:

MFtheory ≈
1

R

n=+N∑

n=−N

[R2 − (nδh)2]1/2 cos(2πffnδh)δh (19)

which we rewrite as

MFtheory ≈ δh

n=+N∑

n=−N

[

1−
( n

N

)2
]1/2

cos

(
2πffRn

N

)

(20)

7.2. Important Mathematical and ¡¡¡PRACTICAL!!! Point!

Note the first important point that MFtheory. . .

• is a function only of the combination ffR, and

• in particular, has zero crossings that occur at specific values of ffR.

Note the second important point that for MFobserved. . .
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• The zero crossings occur at specific measured values of ff .

Thus, by comparing the zero crossing numbers for MFtheory and MFobserved, you get the radius R.

8. REFERENCE READING on INTERFEROMETRY AND APERTURE

SYNTHESIS

The appropriate reference for our purposes is the article Interferometry and Aperture Synthesis,

which is chapter 10 of the book Galactic and Extragalactic Radio Astronomy, First Edition. The

authors are Fomalont and Wright; Melvyn Wright is a research scientist in our radio lab here at

Berkeley and is a real expert. This chapter is excellent, providing the basics without excessive detail

(although it has more than we need). If you want more depth than we provide here, we suggest

the following sections of this chapter: (1) §10.1.3, which describes a two-element interferometer;

section e of this chapter is on polarization and you can skip it; (2) §10.2.1 and §10.2.2, which

describe “a working interferometer”; and (3) Appendix II, which describes the geometrical details.

There is a scaling mistake in their equation for the fringe frequency νf : their equation needs to

be multiplied by the rotation rate of the Earth in radians per second. For example, for an east-west

baseline of 343.8 wavelengths looking at declination zero on the meridian, the fringe frequency on

the sky is 343.8 fringes per radian. This means that the fringe spacing on the sky is 1
343.8 radians

or 10 arcmin; it takes the Earth 40 seconds of time to turn through 10 arcmin, so the fringe period

in this case is 40 seconds and νf = .025 Hz. More generally, for this east-west interferometer the

fringe frequency is νf = .025 cos δ cosh Hz, where δ is the declination and h the hour angle.

If you want to know really everything and in complete mathematical detail, read the book

Interferometry and Synthesis in Radio Astronomy by Thompson, Moran, and Swenson. But such

detail is more than we want and can be overwhelming. Our main interest is the geometry—how

the baseline projects on the u− v plane. This is in chapter 4, and the most important sections for

us are chapter 4.2 and 4.4.

With the longer baselines of research-class interferometers/arrays comes increased angular

resolution, and all of our sources become finite in angular size, which means that the telescope

arrays can map the sources using Fourier techniques. Some types of source are so small that

mapping them requires interferometers with baseline lengths comparable to the Earth’s diameter,

a technique called “Very Long Baseline Interferometry” (VLBI). And some sources, such as pulsars,

are even too small for VLBI!


