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In our never-ending attempt to make your life easier, we present you with this highly in-

structive, time-saving, and labor-saving informative document! Here we give heuristic derivations,

discussions, examples, and the prescription for doing least-squares the easy way using matrix tech-

niques generally, and specifically in IDL. This prescription is given as an example in §4, and the

power-user can skip the details and go directly there.

This document is an update, correction, clarification, and elaboration of a previous one made

exclusively for the undergraduate lab class. Here we extend the discussion considerably to cover

most of what anyone will need in future professional life. This makes the document longer, but

the first parts (§0 to 6) are still accessible at the introductory level because they haven’t changed

much. We occasionally refer to the books Bevington and Robinson (1992; BR), Cowan (1998),

Press et al. (2001; Numerical Recipes, NR) and Taylor (1997; T97), and we update the notation

to partially conform with NR. We owe sections 12 and 13 to the excellent website of Stetson,

http://nedwww.ipac.caltech.edu/level5/Stetson/Stetson4.html. Section 14 treats the case when all

measured parameters have errors; we use the very general approach of Jefferys (1980).

We begin with least-squares in the classic sense, meaning we minimize the sum of squares

instead of minimizing χ2. In astronomy, more often than not you don’t have an independent

assessment of the intrinsic uncertainty in the data, which means you cannot evaluate χ2, and the

least squares approach is the only option. However, often in astronomy you do want to weight

observations differently, e.g. because of integration time, and this requires an approach similar to

the χ2 one. In later sections we generalize to the χ2 and this other weighted-observations case.
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0. LEAST-SQUAREs FITTING FOR TWO PARAMETERS, AS WITH A

STRAIGHT LINE.

0.1. The closed-form expressions for a straight-line fit

First consider the least-squares fit to a straight line. Let ym be the mth measurement of the

observed quantity (in this example, ym is zenith distance; tm be the time of the mth measurement;

M = the total number of observations, i.e. m runs from 0 to M − 1. Remember that in the least-

squares technique, quantities such as tm are regarded to be known with high accuracy while the

quantity ym has uncertainties in its measurement.

We expect the zenith distance ym to change linearly with time as follows:
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A+Btm = ym . (0.1)

Given this, one does the maximum likelihood (ML) estimate assuming Gaussian statistics. When

all measurements have the same intrinsic uncertainty, this is the same as looking for the solution

that minimizes the sum of the squares of the residuals (which we will define later). This leads to

the pair of equations (Taylor 8.8, 8.9), called the normal equations

AN +B
∑

tm =
∑

ym (0.2a)

A
∑

tm +B
∑

t2m =
∑

tmym . (0.2b)

Two equations and two unknowns—easy to solve! The closed-form equations for (A,B) are Taylor’s

equations 8.10 to 8.12.

0.2. Better is the following generalized notation.

We want a way to generalize this approach to include any functional dependence on t and even

other variables, and to have an arbitrarily large number of unknown coefficients instead of just the

two (A,B). This is very easy using matrix math. We will ease into this matrix technique gently,

by first carrying through an intermediate stage of notation.

First generalize the straight-line fit slightly by having two functional dependences instead

of one. We have something other than the time tm; call it sm. For example, we could have

sm = cos(tm) or sm = t2m; or we could have sm = xm, where xm is the position from which the

observation was taken. To correspond to equation 0.1, sm = 1. Then we rewrite equation 0.1 to

include this extra dependence

Asm +Btm = ym . (0.3)

There are still only two unknown parameters, so this is an almost trivial generalization; later we’ll

generalize to more parameters.

We have M equations like equation 0.3, one for each measurement. They are known as the

equations of condition because they are the equations that specify the theoretical model to which

we are fitting the data. There are M equations of condition and only two unknowns (A and B).

This is too many equations! We have to end up with a system in which the number of equations is

equal to the number of unknowns.
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To accomplish this, from equation 0.3 we form the normal equations. The number of normal

equations is equal to the number of unknowns, so in this case we will have two. We could carry

through the same ML derivation to derive equations equivalent to equation 0.2; the result is

A
∑

s2m +B
∑

smtm =
∑

smym (0.4a)

A
∑

smtm +B
∑

t2m =
∑

tmym . (0.4b)

We can rewrite these equations using the notation [st] =
∑

smtm, etc.:

A[s2] +B[st] = [sy] (0.5a)

A[st] +B[t2] = [ty] . (0.5b)

This is, of course, precisely analogous to equation 0.2. And now it’s clear how to generalize to more

parameters!

1. LEAST-SQUARES FITTING FOR MANY PARAMETERS, AS WITH A

CUBIC

With this notation it’s easy to generalize to more (N) unknowns: the method is obvious

because in each equation of condition (like equation 0.3) we simply add equivalent additional terms

such as Cum, Dvm, etc; and in the normal equations (equation 0.5) we have more products and

also more normal equations.

Let’s take an example with four unknowns (N = 4), which we will denote by A,B,C,D; this

would be like fitting a cubic. With N = 4 we need at least five datapoints (M = 5), so there must

be at least five equations of condition. The generalization of equation 0.4 is the M equations

Asm +Btm + Cum +Dvm = ym , (1.1)

with m = 0 → (M − 1). Again, the least-squares-fitting process assumes that the sm, tm, um, vm
are known with zero uncertainty; all of the uncertainties are in the measurements of ym. We then

form the four normal equations; the generalization of equation 0.5 written in matrix format is:
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[ss] [st] [su] [sv]

[ts] [tt] [tu] [tv]

[us] [ut] [uu] [uv]

[vs] [vt] [vu] [vv]







A

B

C

D


 =




[sy]

[ty]

[uy]

[vy]


 (1.2)

The N ×N matrix on the left is symmetric. With N equations and N unknowns, you can actually

solve for A,B,C,D!

2. FAR, FAR BEST AND EASIEST: MATRIX ALGEBRA

The above equations are terribly cumbersome to solve in a computer code because they require

lots of loops. However, it becomes trivial if we use matrices. Here we designate a matrix by

boldface type.

We illustrate the matrix method by carrying through the above N = 4 example, and we assume

that there are 5 independent measurements (M = 5). We first define the matrices

X =




s0 t0 u0 v0
s1 t1 u1 v1
s2 t2 u2 v2
s3 t3 u3 v3
s4 t4 u4 v4




(2.1a)

a =




A

B

C

D


 (2.1b)

Y =




y0
y1
y2
y3
y4




(2.1c)

so, in matrix form, the equations of condition (equation 1.1) reduce to the single matrix equation
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X · a = Y . (2.2)

The notation for these equations corresponds to NR’s. We write them with subscripts σ to empha-

size that they are calculated without dividing by σmeas, i.e. that we are doing least squares instead

of chi-square fitting. For chi-square fitting, see §8 and 9.

Our matrixX corresponds to NR’s “design matrix”A of Figure 15.4.1, except that our elements

are not divided by σmeas,m, and the matrix equation of condition (equation 2.2) is identical to the

expression inside the square brackets of NR’s equation 15.4.6. The differences arise because here

we are discussing least-squares fitting instead of chi-square fitting, i.e. we have omitted the factors

involving σmeas,m, the intrinsic measurement uncertainties (§8).

Again, there are more equations than unknowns so we can’t solve this matrix equation directly.

So next we form the normal equations from these matrices. In matrix form, the normal equations

(equation 1.2) reduce to the single equation

[α] · a = [β] , (2.3)

(NR equation 15.4.10), where

[α] = XT ·X (2.4a)

[β] = XT ·Y . (2.4b)

The matrix [α] is known as the curvature matrix because each element is twice the curvature of σ2

(or χ2) plotted against the corresponding product of variables.

The number of equations is equal to the number of unknowns, so the solution of the matrix

equation is easy—just rewrite it by multiplying both sides by the inverse of [α] (that is, by [α]−1),

which gives

a = [α]−1·[β] . (2.5)

All of these matrix operations are trivially easy in IDL (§4).

3. UNCERTAINTIES IN THE DERIVED COEFFICIENTS

How about the uncertainties in the derived quantities contained in the matrix a?
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The first thing to do is derive the sample variance s2 (the square of standard deviation, or

mean error, or dispersion, etc) of the individual datapoints using the generalization of the usual

definition for a straight average of x, s2 = [
∑M−1

0 (xm − xm)2/(M − 1)]. The generalization is,

simply, to replace the M − 1 in the denominator by ν = M − N . In the straight-average case,

N = 1 so this fits. Here ν is known as the number of degrees of freedom and N , the number of

unknown coefficients, is known as the number of constraints. So we have

s2 =
1

M −N

M−1∑

m=0

(ym − ym)2 , (3.1)

where ym are the values for ym predicted by the derived quantities a. Note the difference: ym are

the observed values, while ym are the values predicted by the least-squares fit. The predicted values

are those that are computed from the derived coefficients A,B,C. . . The M quantities

δym = ym − ym (3.2)

are called the residuals or deviations from the fit.

It’s worth reiterating some essentials about s2, and in particular the denominator (M − N).

First consider the case of a single-parameter fit, e.g. N = 1. Then we cannot possibly derive

a sample variance from only one measurement M = 1; but we can from two M = 2. So the

denominator makes sense from that standpoint. The same goes for N > 1.

Next consider the effect of using (M − N) in the denominator: it increases s2 by the ratio
M

M−N over what you’d get if you just took a straight average and used M . This compensates for

the fact that you are subtracting ym, which is derived from the data, instead of the truly correct

value y∗. (In formal statistical language, y∗ is the mean of the parent population from which your

set of measurements is drawn.) If you used the truly correct value y∗, then the sum would be larger

than when using ym. The use of M − N in the denominator compensates for this larger value in

exactly the right way: the expectation value E(s2) for a large number of experiments is precisely

equal to the normal variance σ2, which you’d get by using [y∗ and M ] instead of [ym and (M −N)]

in equation 3.2; see Cowan equations 5.9 and 5.10. So s2 is, in fact, exactly the number we want:

an unbiased estimate of the true variance of our sample. Why not use [y∗ and M ] in equation 3.2?

The reason is obvious: we don’t know y∗! (If we did, we wouldn’t be doing this analysis!)

It’s easy to calculate the ym with matrices. First define the matrix Y that contains these

values:
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Y =




y0
y1
y2
y3
y4




(3.3)

Calculating Y is simple:

Y = X · a . (3.4)

Note that X is already defined (equation 2.1) and a was solved for in equation 2.5. It’s convenient

to define the residual matrix

δY = Y −Y (3.5)

so we can write

s2 =
1

M −N
δYT · δY . (3.6)

This is the sample variance of the datapoints, not the variances in the derived coefficients.

We can obtain these as before, by generalizing the results from the two-parameter case like the

straight-line fit discussed in §0. We won’t go through the derivation here; you can find it in Taylor

§8.4 and equation 8.16, 8.17. The result is

sa
2 = s2diag{[α]−1} . (3.7)

Or, to put it simply in words: to get the variance of coefficient n in the matrix a, multiply s2 by

the nth diagonal element of [α]−1.

Although the above equation for sa
2 is correct, there is more to the story because of covariances,

which are the off-diagonal elements. We return to this topic in §5 and §9.

4. A NUMERICAL EXAMPLE AND ITS SOLUTION IN IDL

If the following sounds like Greek to you, take a look at §2 and 3.
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4.1. Generation of the numerical example

Suppose that we make four measurements of the angle y and we want to fit to a parabolic

function in time t. In the notation of equation 1.1, s would be unity, t the time, and u the

time squared, so the number of unknowns is three (N = 3). Because there are four independent

measurements (M = 4) the subscripts run from m = 0 → 3. Suppose that the four values of time

are 5, 7, 9, 11.

Fig. 4.1.— Our numerical example. Stars are the four datapoints; the solid line is the fit. We

perform two fits: one uses the original definition of time; the other uses (time−8), in effect moving

the y-axis to the dashed line. The two fits give the same line but the coefficients and their errors

differ greatly.

First we create the matrix X in IDL

X = fltarr(N,M) = fltarr(3,4) (4.1)

and then we populate it with numbers. In your own work, you would normally do this by reading

a data file and transferring the numbers to the matrix using IDL commands; to work through this

example, you might manually type them in. After populating the matrix, in direct correspondence

with equation 2.1a we have sm = 1, tm = timem, um = time2m:
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X =




1 5 25

1 7 49

1 9 81

1 11 121


 . (4.2a)

Suppose that the four measured values of y are (equation 2.1c)

Y =




142

168

211

251


 . (4.3a)

Figure 4.1 shows the datapoints, together with the fitted curve.

One word of caution here: in IDL, to get these into a column matrix, which is how we’ve

treated Y above, you have to define Y as a two-dimensional array because the second dimension

represents the column. When working in IDL it’s more convenient to define a row vector, which

has only one dimension; in IDL you do this by defining Y = [142, 168, 211, 251]; you can make it

into the necessary column vector by taking its transpose, i.e. Y = transpose(Y).

4.2. Solution of the Numerical Example in IDL

In IDL we calculate the normal equation matrices and denote the [α] in equation 2.4a by XX:

XX = transpose(X)##X , (4.4a)

and we denote the [β] in equation 2.4b by XY:

XY = transpose(X)##Y . (4.4b)

In IDL we take the inverse of [α] (same as XX) by

XXI = invert(XX) . (4.5)

The least-squares fitted quantities are in the matrix a (equation 2.5), which we obtain in IDL

with
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a = XXI ## XY . (4.6)

In IDL we denote the matrix of predicted values ym by YBAR, which is

YBAR = X ## a , (4.7)

and we can also define the residuals in Y as

DELY = Y −YBAR . (4.8)

In IDL we denote s2 in equations 3.1 and 3.6 by s sq and write

s sq = transpose(DELY)##DELY/(M −N) , (4.9a)

or

s sq = total(DELY ∧ 2)/(M −N) . (4.9b)

It is always a good idea to plot all three quantities (the measured valuesY, the fitted valuesYBAR,

and the residuals DELY) to make sure your fit looks reasonable and to check for bad datapoints.

To get the error in the derived coefficients we need a way to select the diagonal elements of a

matrix. Obviously, any N ×N matrix has N diagonal elements; a convenient way to get them is

diag elements of XXI = XXI[(N+ 1) ∗ indgen(N)] . (4.10)

In IDL, we define the variances of the N derived coefficients by vardc (think of “variances of

derived coefficients”). You can get this as in equation 3.7 from1

vardc = s sq ∗XXI[(N+ 1) ∗ indgen(N)] . (4.11)

1If you used equation 4.9a instead of 4.9b, then IDL considers s sq an array and you need to use a # instead of a

∗ in this equation.
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4.3. Discussion of the numerical example

For this numerical example, the solution (the array of derived coefficients) is

a =




96.6250

4.5000

0.8750


 (4.12a)

and the errors in the derived coefficients [the square root of the σ2’s of the derived coefficients, i.e.

[σ2
n]

1/2 or, in IDL, sqrt(vardc) in equations 4.11] are:

σA =




34.012

9.000

0.5590


 . (4.12b)

These results look horrible: the uncertainties are large fractions of the derived coefficients,

The reason: we have specifically chosen an example with terrible covariance. And the great

thing is this can be fixed easily (at least in this case—certainly not always), without taking more

data!

5. THE COVARIANCE MATRIX AND ITS NORMALIZED COUNTERPART

First we provide a general discussion, then we apply it to the above numerical example.

5.1. Definition of the normalized covariance (or correlation) matrix

The variances in the derived coefficients are obtained from the diagonal elements of XXI. The

off-diagonal elements represent the covariances between the derived coefficients. Covariance means,

specifically, the degree to which the uncertainty in one derived coefficient affects the uncertainty in

another derived coefficient.

Because the covariance matrix elements relate pairwise to the various coefficients, the units of

the matrix elements are all different. This makes it convenient to reduce all the matrix elements

to a standard set of units—namely, no units at all. So before discussing the covariance matrix per

se, we first discuss its normalized counterpart.
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The normalized covariance matrix2 ncov is derived from XXI by dividing each element by the

square root of the product of the corresponding diagonal elements. Let ncov be the normalized

covariance matrix; then

ncovik =
XXIik√

XXIii XXIkk
. (5.1)

This is the same normalization that one does with the Pearson linear correlation coefficient of two

variables. In fact, the elements of the normalized covariance matrix are the correlation coefficients.

So it makes sense to call this matrix the correlation matrix, and many people do. In IDL, you do

the following:

dc = XXI[(N+ 1) ∗ indgen(N)] (5.2a)

ncov = XXI/sqrt(dc##dc) . (5.2b)

In the above, dc##dc is an N × N matrix consisting of products of the diagonals of XXI, so

dividing XXI by sqrt(dc##dc) generates the normalized version.

Because ncov is a normalized covariance matrix, you might think that its non-normalized

parent is XXI—and you’d be almost right. For the least-squares case we are discussing, the true

covariance matrix C is3

C = s2 XXI . (5.3)

In ncov, the diagonal elements are all unity and the off-diagonal elements reflect the inter-

dependence of the derived coefficients on each other. The off-diagonal elements can range from

−1 → 1. Each matrix element is the correlation coefficient between the uncertainties of its two

parameters. In particular, suppose that the data happen to produce a coefficient that differs from

its true value by some positive number. If the normalized matrix element is negative, then the

other coefficient will tend to differ from its true value by a negative number.

Here’s a more detailed discussion of what the covariance means. Suppose you are least-squares

fitting for two derived coefficients (A0 and A1). When you do a least-squares fit to a set of data,

you are fitting one set of data out of a possible infinity of possible sets that you’d get by repeating

the experiment, and your particular set of data happens to produce specific values of A0 and A1,

which differ from the true values (A∗
0, A

∗
1) by amounts δA0 and δA1. If their covariance is zero,

2It is a pleasure to thank Doug Finkbeiner for introducing me to this concept.

3For chi-square, you use σ
2
meas instead of s2; see §8.
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then in the infinity of data sets you’d find that δA0 is uncorrelated with δA1. But if it is nonzero,

these two quantities would be correlated.

A high covariance is bad because the derived variables depend on each other. For one, this

means that with noisy data power can be shared or passed from one parameter to/from its covariant

counterpart(s). As we shall see in §9, it also significantly influences the uncertainties in derived

coefficients. Often a high covariance results from a poor choice of functions that you are fitting or

even a bad choice of the zero point of the independent variable—as in our numerical example (see

the next subsection). And, as in that example, you can sometimes eliminate the bad covariance

by reformulating the problem—you don’t even need to take more data! The best reformulation

involves using a set of orthonormal functions. However, sometimes your interest is a specific set

of functions that are not orthogonal, and in such cases it makes no sense to convert to orthogonal

functions—because you just have to convert back again and do the error propagation after-the-fact

instead of letting the least-squares process do it for you.

5.2. The covariance in our numerical example

Apply equation 5.2 to obtain the covariance matrix for our numerical example:

ncov =




1 −.989848 .969717

−.989848 1 −.993808
.969717 −.993808 1


 . (5.4)

The off-diagonal elements are huge. This is the reason why our derived coefficients have such

large uncertainties. Note, however, that the fitted predicted fit is a good fit even with these large

uncertaintis.

In this seemingly innocuous example we have an excellent case of a poor choice of zero point

for the independent variable (the time). The reason is clear upon a bit of reflection. We are fitting

for y = A0 + A1t + A2t
2. The coefficient A0 is the y-intercept and A1 is the slope. Inspection of

Figure 4.1 makes it very clear that an error in the slope has a big effect on the y-intercept.

Now we retry the example, making the zero point of the time equal to the mean of all the

times, that is we set (timem = timem− 8). We get the same fitted line, but the derived coefficients

are completely different—and amazingly better! We get

A =




188.625

18.500

0.87500


 (5.5a)
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σA =




3.58

1.00

0.559


 . (5.5b)

In redefining the origin of the independent variable, we have made the zero intercept completely

independent of the slope: changing the slope has no affect at all on the intercept. You can see this

from the normalized covariance matrix, which has become

ncov =




1 0 −0.78086881
0 1 0

−0.78086881 0 1


 , (5.6)

which is nice, but not perfect: Our step is partial because the second-order coefficient A2 affects

A0 because, over the range of [(time− 8) = −3→ +3], the quantity [A2 Σ(timem − 8)2] is always

positive and is thereby correlated with A0.

We could complete the process of orthogonalization by following the prescription in BR chapter

7.3, which discusses the general technique of orthogonalizing the functions in least-squares fitting.

The general case is a royal pain, analytically speaking, so much so that we won’t even carry it

through for our example. But for numerical work you accomplish the orthogonalization using

Singular Value Decomposition (SVD), which is of course trivial in IDL (§11).

For some particular cases, standard pre-defined functions are orthogonal. For example, if tm
is a set of uniformly spaced points between (−1 → 1) and you are fitting a polynomial, then the

appropriate orthogonal set is Legendre polynomials. This is good if your only goal is to represent

a bunch of points by a polynomial function, because the coefficients of low-order polynomials are

independent of the higher ones. However, it’s more work and, moreover, often you are interested in

the coefficients for specific functions that don’t happen to be orthogonal; in such cases, you should

just forge ahead.

But always look at the normalized covariance matrix. Suppose one pair of off-diagonal elements

departs significantly from zero. Then their corresponding functions are far from being orthogonal

and the variances of the derived coefficients will suffer as a result. You might be able to eliminate

one of the parameters to make the fit more robust. For example, suppose one function is t cos(t)

and the other is sin(t) cos(t). If the range of t is small, these two functions are indistinguishable

and have a large covariance; you should eliminate one from the fit. If the range of t is large, there

is no problem.

For further discussion of covariance, see §9. Also, you might also want to try out another

example in Taylor’s §8.5.



– 18 –

6. REJECTING BAD DATAPOINTS I.: CHAUVENET’S CRITERION

Least-squares fitting is derived from the maximum likelihood argument assuming the datapoint

residuals δym have a Gaussian pdf. This means that the errors are distributed as

p(δy;σ) =
1√
2πσ

e
−
(

δy2

2σ2

)

, (6.1)

where σ2 is the true variance of the datapoints, i.e. s2 in equation 3.1 (to be precise, s2 needs to

be averaged over many experiments).

More importantly, the probability of finding datapoints inside the limits ±∆y is

P(|δy|<∆y) =

∫ +∆y

−∆y
p(δy;σ)d(δy) = erf

(
∆y√
2σ

)
, (6.2)

where we use the commonly-defined error function erf(X) = 1√
π

∫ +X
−X e−x2

dx. A particularly im-

portant value is for ∆y = σ, for which

P(|δy|<σ) = 0.683 . (6.3)

If we have an experiment with M datapoints, then the number of datapoints we expect to lie

outside the interval ±∆y is

M(outside ∆y) = M

[
1− erf

(
∆y√
2σ

)]
. (6.4)

Chauvenet’s criterion simply says:

1. Find ∆y such that M(outside ∆y) = 0.5. This is given by

∆y

σ
=
√
2 erf−1

(
1− 1

2M

)
. (6.5)

This criterion leads to the numbers in the associated table, which is a moderately interesting

set of numbers. Many astronomers adopt 3σ, which is clearly inappropriate for large N !

2. Discard all datapoints outside this range.

We offer the following important Comments:
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Chauvenet’s criterion versus M

M ∆y
σ

100 2.81

1000 3.48

104 4.06

105 4.56

• This assumes data are Gaussian-distributed. In real life this doesn’t often happen because

of “glitches”. Examples of glitches can be interference in radio astronomy, meteors in optical

astronomy, and cosmic rays on CCD chips. These glitches produce bad points that depart

from Gaussian statistics. They are often called outliers.

It is very important to get rid of the outliers because the least-squares process minimizes

the squares of the residuals. Outliers, being the points with the largest residuals, have a

disproportionately evil effect on the result.

On the other hand, if your data don’t follow Gaussian statistics as their intrinsic pdf, then

you should think twice before using least squares! (Like, maybe you should try the median

fitting discussed in §13.)

• You may wish to relax Chauvenet’s criterion by increasing the ∆x beyond which you discard

points. This is being conservative and, in the presence of some non-Gaussian statistics, not

a bad idea. But think about why you are doing this before you do it. Maybe the intrinsic

statistics aren’t Gaussian?

You should never make Chauvenet’s criterion more stringent by decreasing the ∆x beyond

which you discard points. This rule hardly needs elaboration: it means you are discarding

datapoints that follow the assumed pdf!

• Most statistics books (e.g. Taylor, BR) harp on the purity aspect. One extreme: don’t throw

out any datum without examining it from all aspects to see if discarding it is justified. The

other extreme: apply Chauvenet’s criterion, but do it only once and certainly not repeatedly.

Being real-life astronomers, our approach is different. There do exist outliers. They increase

the calculated value of σ. When you discard them, you are left with a more nearly perfect

approximation to Gaussian statistics and the new σ calculated therefrom will be smaller than

when including the outliers. Because the original σ was too large, there may be points that

should have been discarded that weren’t. So our approach is: repeatedly apply Chauvenet’s

criterion until it converges.

If it doesn’t converge, or if it discards an inordinately large number of datapoints, you’ve got

real problems and need to look at the situation from a global perspective.
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• Many observers use the 3σ criterion: discard any points with residuals exceeding 3σ. This

is definitely not a good idea: the limit 3σ is Chauvenet’s criterion for M = 185 datapoints.

Very often M exceeds this, often by a lot.

• To apply Chauvenet’s criterion it’s most convenient to calculate the inverse error function.

For this, you have two choices. One (for sissies like myself), you can use inverf.pro from

my area ∼heiles/idl/gen . But the real he-man will want to learn about using a root-finding

algorithm such as Newton’s method (NR §9.4 and 9.6) together with the error function; both

procedures exist in IDL as newton and errorf. You at least ought to skim lightly some of

NR’s chapter 9 about root finding, because some day you’ll need it.

7. NONLINEAR LEAST SQUARES

The least-squares formulation requires that the data values depend linearly on the unknown

coefficients. For example, in equation 0.1, the unknown coefficients A and B enter linearly.

Suppose you have a nonlinear dependence, such as wanting to solve for A and B with equations

of condition that look like

sin(Atm) +Btm = ym . (7.1)

What do you do here? You linearize the process, using the following procedure.

First, assume trial values for A and B; call these A0 and B0. You should pick values that are

close to the correct ones. In our example you wouldn’t need to do this for B, but it’s easier to treat

all coefficients identically. These trial values produce predicted values y0,m:

sin(A0tm) +B0tm = y0,m . (7.2)

Subtract equation 7.2 from 7.1, and express the differences as derivatives. Letting δA = A − A0

and δB = B −B0, this gives

δA[tm cos(A0tm)] + δBtm = ym − y0,m . (7.3)

This is linear in (δA, δB) so you can solve for them using standard least squares. Increment the

original guessed values to calculate A0,new = A0 + δA and B0,new = B0 + δB, These won’t be

exact because higher derivatives (including cross derivatives) come into play, so you need to use

these new values to repeat the process. This is an iterative procedure and you keep going until the

changes become “small”. The generalization to an arbitrarily large number of unknown coefficients

is obvious.
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We now offer some cautionary and practical remarks.

(0) In linear least squares, the curvature and covariance matrices are set by the values of

the independent variable, which here is denoted by t, and are independent of the datapoint values.

Here, the matrix elements change from one iteration to the next because they depend on the guessed

parameters, and sometimes they even depend on the datapoint values.

(1) Multiple minima: Nonlinear problems often have multiple minima in σ2. A classical case

is fitting multiple Gaussians to a spectral line profile. Gaussians are most definitely not orthogonal

functions and in some cases several solutions may give almost comparably good values of σ2, each

one being a local minimum. For example, for the case of two blended Gaussians, one can often

fit two narrow Gaussians or the combination of a wide and narrow Gaussian, the two fits giving

almost equal σ2. The lower of these is the real minimum but, given the existence of systematic

errors and such, not necessarily the best solution. The best solution is often determined by physical

considerations; in this case, for example, you might have physical reasons to fit a broad plus narrow

Gaussian, so you’d choose this one even if its σ2 weren’t the true minimum.

(2) The Initial Guess: When there are multiple minima, the one to which the solution

converges is influenced by your initial guess. To fully understand the range of possible solutions,

you should try different initial guesses and see what happens. If the solutions always converge to

the same answer, then you can have some confidence (but not full confidence) that the solution is

unique.

(3) Iterative stability: If your initial guess is too far from the true solution, then the

existence of higher derivatives means that the computed corrections can be too large and drive the

iterative solution into instability. It is often a good idea to multiply the derived correction factors

(δA and δB above) by a factor F less than unity, for example F = 0.5 or 0.75. This increases the

number of iterations required for convergence but often allows convergence instead of producing

instability.

(4) Convergence criteria: How do you know when the solution has converged? One way:

for each iteration, calculate the uncertainties in the derived coefficients. If the uncertainty exceeds

the correction, then you are getting close. An alternate way, which I usually use: if the fractional

correction (e.g. δA
A0

) decreases below some threshold, say 1%, you’re close (some parameters, such

as angles, need a threshold that is absolute instead of fractional). At this point, if you are using

F 6= 1, set F = 1, do a few more iterations, and you’re done.

(5) Numerical derivatives: Sometimes the equations of condition are so complicated that

taking the derivatives, as in obtaining equation 7.3, is a huge job and subject to mistakes. So you

can take numerical derivatives instead of analytic ones. Be careful, though; it’s safest to use double

precision and think a bit about numerical accuracy; take a look at NR’s section 5.7 on evaluating

numerical derivatives.

(6) Canned nonlinear least squares (particularly Levenberg-Marquardt, and var-
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ious Gaussian fit routines): Packages like IDL offer canned nonlinear least squares routines.

They are designed to work well for a wide range of different problems. However, for the specific

problem at hand you can often do better by tailoring things (such as the factor F and convergence

criteria above). A good example is Gaussian fitting: IDL’s fitting program doesn’t converge for

multiple overlapping Gaussians, while for many of these cases the program that I wrote myself works

fine; and converseley, my program doesn’t work well for single Gaussians with a small number of

datapoints, in which case IDL’s GAUSSFIT is much better..

When convergence is slow or doesn’t occur because your functions are complicated, you might

wish to try the Levenberg-Marquardt method (NR §15.5); IDL function LMFIT. This technique

involves increasing the diagonal elements of the curvature matrix by a set of suitably chosen factors;

when you get close to the minimum, it resets these factors to unity. LM is the gold standard for

nonlinear least-squares fitting because it is supposed to converge faster than other methods. Because

of its sterling reputation, many people think it’s the panacea. How many times have I seen journal

articles saying that the LM method was used—as if that’s all one needs to know—but without

saying anything about the important stuff, such as how parameter space was explored to determine

uniqueness of the solution! See the discussion in NR. I’ve done lots of nonlinear fits and have never

had to resort to any tactic other than the simple, straightforward linearization process discussed

above.

(7) Be careful and LOOK at the solution before accepting it! These nonlinear problems

can produce surprising results, sometimes completely meaningless results. Don’t rely on them to

be automatic or foolproof!

(8) Reformulate! (?) Sometimes you can avoid all this by reformulating the problem. There

are two cases: the harmless case and the not-so-harmless case.

An example of the harmless case is fitting for the phase φ in the function y = cos(θ + φ).

This is definitely a nonlinear fit! But its easy to reformulate it in a linear fit using the usual trig

identities to write y = A cos θ−B sin θ, where B
A = tanφ. Solve for (A,B) using linear least squares,

calculate φ, and propagate the uncertainties.

An example of the not-so-harmless case is in NR’s §15.4 example: fit for (A,B) with equations

of condition ym = Ae−Bxm . They suggest linearizing by rewriting as log(ym) = C − Bxm, solving

for (B,C), and deriving A after-the-fact. This is not-so-harmless because you are applying a

nonlinear function to the observed values ym; thus the associated errors σmeas,m are also affected.

This means you have to do weighted fitting, which is discussed in §8 below. Suppose that A = 1,

your datapoints all have σmeas,m = 0.05, and the observed ym ranges from 0.05 to 1. The datapoint

with ym = 0.05 has a manageable σmeasm , but what is the corresponding value of σmeas,m for

log ym = log 0.05? It’s ill-defined and asymmetric about the central value. Or even, God forbid,

you have an observed ym that’s negative??? Even for ym not near zero, you need to calculate new

σmeas,m by error propagation; in this case, you need to reassign σ(log y) = d log y
dy σ(y) = σ(y)

y . This is

OK when ym is large enough so that the linear approximation is accurate, but if not the converted
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noise becomes non-Gaussian.

You should regard your datapoints as sacrosanct and never apply any nonlinear function to

them.

8. CHI-SQUARE FITTING AND WEIGHTED FITTING: DISCUSSION

IGNORING COVARIANCE

In least-squares fitting, the derived parameters minimize the sum of squares of residuals as in

equation 3.1, which we repeat here:

s2 =
1

M −N

M−1∑

m=0

δy2m .

where the mth residual δym = (ym − ym). Chi-square fitting is similar except for two differences.

One, we divide each residual by its intrinsic measurement error σmeas,m; and two, we define χ2 as

the sum

χ2 =

M−1∑

m=0

δy2m
σ2
meas,m

. (8.1a)

Along with χ2 goes the reduced chi square χ̂2 = χ2

M−N

χ̂2 =
1

M −N

M−1∑

m=0

δy2m
σ2
meas,m

, (8.1b)

which is more directly analogous to the definition of s2.

Chi-square fitting is very much like our least-squares fitting except that we divide each data-

point by its intrinsic measurement uncertainty σmeas,m. Thus, the reduced chi-square (χ̂2) is equal

to the ratio of the variance of the datapoint residuals (s2) to the adopted intrinsic measurement

variances (σ2
meas,m). So it should be obvious that in chi-square fitting, you must know the mea-

surement uncertainties σmeas,m of the individual datapoints beforehand. If you want to give the

various datapoints weights based on something other than σmeas,m, then that is just like chi-square

fitting except that you can adopt an arbitrary scale factor for the uncertainties (section 8.5).

Chi-square fitting treats uncertainties of the derived parameters in a surprising way. Getting

the coefficient uncertainties with chi-square fitting is a tricky business because
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1. With the standard treatments, the errors in the derived parameters don’t depend on the

residuals of the datapoints from the fit (!).

2. The errors in the derived parameters can depend on their mutual covariances. This discussion

requires a separate section, which we provide below in §9.

In this section we treat chi-square fitting ignoring covariance. We begin by illustrating the difference

between least squares and chi-square fitting by discussing the simplest chi-square fitting case of a

weighted mean; then we generalize to the multivariate chi-square fitting case.

8.1. The weighted mean: the simplest chi-square fit

First, recall the formulas for an ordinary unweighted average in which the value of each point

is ym and the residual of each point from the weighted mean is δym:

mean =

∑
ym

M
(8.2a)

s2 =

∑
δy2m

M − 1
(8.2b)

s2mean =
s2

M
=

∑
δy2m

M(M − 1)
, (8.2c)

where s2mean is the variance of the mean and s2 is the variance of the datapoints around the mean.

Recall that in this case the mean is the least-squares fit to the data, so to use least squares jargon we

can also describe smean as the error in the derived coefficient for this single-parameter least-squares

fit.

Now for a weighted average in which the weight of each point is wmeas,m = 1
σ2
meas,m

. Applying

maximum likelihood, in an unweighted average the quantity that is minimized is
∑

δy2m; in a

weighted average the quantity minimized is χ2 =
∑ δy2m

σ2
meas,m

=
∑

wmeas,mδy2m → wmeas,m
∑

δy2m,

where to the right of the arrow we assume all wmeas,m are identical. So your intuition says that the

three equations corresponding to the above would become

meanw,intuit =

∑
wmeas,mym∑
wmeas,m

→
∑

ym
M

(8.3a)

Again, to the right of the arrow we assume all wmeas,m are identical and the subscript intuit means

“intuitive”. For the variances the intuitive expressions are

s2w,intuit =
M

M − 1

∑
wmeas,mδy2m∑
wmeas,m

=
χ̂2

(
∑

wmeas,m/M)
→
∑

δy2m
M − 1

= s2 (8.3b)
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s2w,mean,intuit =
s2w,intuit

M
=

∑
wmeas,mδy2m

(M − 1)
∑

wmeas,m
=

χ̂2
∑

wmeas,m
→

∑
δy2m

M(M − 1)
=

s2

M
. (8.3c)

In fact, after a formal derivation, the first two equations (8.3a and 8.3b) are correct, so we will drop

the additional subscipts intuit and formal on mean and s2w. However, after a formal derivation,

the last of these equations becomes, and is always written (e.g. BR equation 4.19; Taylor equation

7.12)

s2w,mean,formal =
1∑

wmeas,m
→ σ2

meas

M
. (8.4)

This is a problem, for the following reason.

Note the excruciatingly painful difference between the intuitive equation 8.3c and the formally

correct equation 8.4: on the right-hand side of the arrows, the intuitive one depends on s2

M (the

variance of the datapoint residuals) , as you’d think it should, while the formal one depends on
σ2
meas

M (the adopted intrinsic measurement variances of the data), which are chosen by the guy doing

the fit. If you do an unweighted average, and derive a certain variance, and next do a weighted

average in which you choose some values for σmeas that happen to be wrong, the two fits give

different results for s2w,mean. This is crazy.

To get around this difficulty, we follow the procedure in BR equations 4.20 to 4.26. This

introduces an arbitrary multiplicative factor for the weights and goes through the ML calculation

to derive, instead of equation 8.4, the far superior

s2w,mean,BR =
χ̂2

∑
wmeas,m

→ s2w
M

, (8.5)

which is precisely the same as our intuitive guess, equation 8.3c. The difference between the formal

equation 8.5 and the intuitive equations 8.3b and 8.4 is the numerator, which contains the reduced

chi-square χ̂2; for the case where all σmeas,m are identical, χ̂2 = s2w
σ2
meas

. Note that χ2 and χ̂2 are

defined in equations 8.1.

8.2. The multivariate chi-square fit

Here we generalize §8.1, which dealt with the weighted average, to the multivariate case. In

this case, chi-square fitting is just like least-squares fitting except for the following:

1. In the least-squares matrix X of equation 2.1a, each row m is a different measurement with

a different intrinsic variance σm. For chi-square fitting you generate a new matrix Xχ, which
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is identical to X except that each row m (which contains a particular equation of condition)

is divided by σm. This new matrix is the same as NR’s design matrix (Figure 15.4.1), which

they denote by A.

2. For chi-square fitting, divide each datapoint ym in equation 2.1b by σm. You are generating

a new data vector Yχ, which is identical to Y except that each datapoint is divided by σm.

This new data vector is the same as NR’s vector b.

3. Note that the above two steps can be accomplished matrixwise by defining theM×M diagonal

matrix [σ] in which the diagonal elements are σm.

[σ] =




σ0 0 . . . 0

0 σ1 . . . 0
...

...
. . . 0

0 0 0 σM−1




(8.6)

in which case we can write

Xχ = [σ]−1·X (8.7a)

Yχ = [σ]−1·Y . (8.7b)

4. Carry through the matrix calculations in equations 8.8 below (using the matrices subscripted

with χ).

You’ve divided each row, i.e. the equation of condition for each row m, by a common factor, so the

solution of that particular equation of condition is unchanged. However, in the grand scheme of

things—i.e. the normal equations—it receives a greater or lesser weight by a factor 1
σ2
m
.

To perform the chi-square fit, we first generate the weighted versions of X and Y

Xχ = [σ]−1·X (8.8a)

Yχ = [σ]−1·Y . (8.8b)

Then the equations of condition are

Xχ · a = Yχ (8.8c)
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and the rest of the solution follows as with an unweighted fit, as before

[αχ] = XT
χ ·Xχ (8.8d)

[βχ] = XT
χ ·Yχ (8.8e)

a = [αχ]
−1 · [βχ] . (8.8f)

Having calculated the derived coefficients a, we can calculate the residuals. In doing so we must

recall that Xχ and Yχ contain factors of 1
σm

and [αχ]
−1 contains factors of σ2

m. With all this, we

can write the chi-square fit predicted data values as

Yχ = Xχ · a (8.8g)

and the chi-square residuals as

δYχ = Yχ −Yχ (8.8h)

Because the data vector Yχ contains factors of 1
σm

, so do the residuals δYχ. You should, of course,

always look at the residuals from the fit, so remember these scale factors affect the residual values!

For example, if all σm are identical and equal to σ, then Yχ = Y
σ . If they don’t, then when you

plot the residuals δYχ each one will have a different scale factor!

Moving on, we have

χ2 = δYT
χ · δYχ (8.8i)

χ̂2 =
δYT

χ · δYχ

M −N
. (8.8j)

Finally, we have the analogy of equations 8.3c and 8.5 expressed in matrix form as in equation 3.7:

sa,intuit
2 = χ̂2 diag{[αχ]

−1} . (8.9)

This intuitively-derived result is in contrast to the result derived from a formal derivation, which

is the analogy to equation 8.4; again, it omits the χ̂2 factor:
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sa,formal
2 = diag{[αχ]

−1} . (8.10)

This formally-derived result is what’s quoted in textbooks (e.g. NR equation 15.4.15, BR equation

7.25). It provides parameter errors that are independent of the datapoint residuals, and leads to

the same difficulties discussed above for the weighted mean case.

8.3. Which equation—8.9 or 8.10?

In most cases—but not all—we recommend that you use equation 8.9. Equation 8.9 is very

reasonable. Suppose, for example, that the least-squares fit model is perfect and the only deviations

from the fitted curve result from measurement error. Then by necessity we have s2 ≈ σ2
meas

and χ̂2 ≈ 1. (We write “≈” instead of “=” because different experiments produce somewhat

different values of s2 because of statistical fluctuations; an average over zillions of experiments

gives σ2 = 〈s2〉.) In this situation, though, equations 8.9 and 8.10 are identical. However, if the

least-squares fit model is not correct, meaning that it doesn’t apply to the data, then the residuals

will be larger than the intrinsic measurement errors, which will lead to larger values of χ2 and

χ̂2—which is the indicator of a poor fit.

However, equation 8.9 is not a panacea. The numerical value of χ̂2 is subject to statistical

variation. If the number of datapoints M is small (or, more properly, if the number of degrees of

freedom (M − N) is small), then the fractional statistical variation in χ̂2 is large and this affects

the normalization inherent in equation 8.9. Alternatively, if you really do know the experimental

errors equation 8.10 is appropriate.

Use your head!

8.4. Datapoints with known relative but unknown absolute dispersions

Here the σm are all different. The mth row of the equation-of-condition matrix X and the

mth element of the data vector Y get divided by their corresponding σm. The equation embodied

in each row of the matrix equation 2.2 remains unchanged, but the different rows are weighted

differently with respect to each other.

Consider two measurements with intrinsic measurement uncertainties (σ1, σ2); suppose σ1 <

σ2. After being divided by their respective σm’s, all of the numbers in row 1 are larger than those

in row 2. In all subsequent matrix operations, these larger numbers contribute more to all of the

matrix-element products and sums. Thus, the measurement with smaller uncertainty has more

influence on the final result, as it should.

Suppose that the above two measurements were taken under identical conditions except that
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measurement 1 received more integration time than measurement 2; we have σ1

σ2
=
(
τ1
τ2

)−1/2
, so the

rows of Xχ are weighted as τ1/2. This means that during the computation of [αχ] = XT
χ ·Xχ, the

self-products of row 1 are weighted as τ1. This means that each datapoint is weighted as τ , which

is exactly what you’d expect! Note that this is also exactly the same weighting scheme used in a

weighted average, in which the weights are proportional to
(

1
σm

)2
. We conclude that the weighting

scheme of the first two steps in section 8.2 agrees with common sense.

Suppose you don’t know the intrinsic measurement dispersion σm, but you do know the relative

dispersion of the various measurements. For example, this would be the case if the datapoints were

taken under identical conditions except for integration time; then σm ∝ τ−1/2. In this case, multiply

each row by its weight w ∝ 1
σm

and proceed as above. (The factors 1
σm

in the equations of condition

become 1
σ2
m

in the normal equations.)

8.5. Persnickety Diatribe on Choosing σm

8.5.1. Choosing and correcting σm

In the previous section, equation 8.10 taught us that—formally, at least—the variances in

the derived fit parameters (or their uncertainties, which are the square roots) depend only on the

adopted uncertainties σm and not on the actual variance of the datapoints.

Are you bothered by the fact that the variances of the derived parameters sa are independent

of the data residuals? You should be: it is obvious that the residuals should affect sa.

Formally, sa depends only on the adopted uncertainties σm, which are chosen beforehand

by you—you’re supposed be such a good experimentalist that you really do know the intrinsic

uncertainty in your measured values. Moreover, you are assuming that there are no other sources

of uncertainty—such as “cosmic scatter” or an inappropriate model to which you are fitting the data.

Suppose your adopted values of σm are off by a common scale factor, i.e. if σm,adopted = fσm,true.

Then χ̂2 ≈ f−2 instead of χ̂2 ≈ 1. And to obtain the parameter errors from δχ2, you must find the

offset δx such that ∆χ2 = f−2 ≈ χ̂2.

You can correct for this erroneous common factor f by dividing your adopted values of σm by

f . Of course, you don’t know what this factor f is until you do the chi square fit. Dividing them

by f is equivalent to multiplying them by χ̂. And, of course, the same as multiplying σ2
m by χ̂2.

8.5.2. When you’re using equation 8.9. . .

To be kosher, after having run through the problem once with the adopted σm, calculate the

χ̂2; multiply all σm by χ̂; and redo the problem so that the new χ̂2 = 1. Then the derived variance
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sa is also correct. You can obtain it either as the corresponding diagonal to the covariance matrix

(equations 8.9 and 8.10, which are identical in this case) or by finding what departure from x0
is necessary to make ∆χ2 = 1.4 This redoing the fit may seem like unnecessary work, but when

we deal with multiparameter error estimation in §9 it’s the best way to go to keep yourself from

getting confused.

8.5.3. Think about your results!

In the case ∆χ2 ≈ 1 (and χ̂2 ≈ 1) the dispersions of the observed points sm are equal to

the intrinsic dispersions of the datapoints σm and the mathematical model embodied in the least-

squares fit is perfect. That, at least, is the theoretical conclusion. In practice, however, your

obtaining such a low, good value for χ̂2 might mean instead that you are using too large values for

σm: you are ascribing more error to your datapoints than they really have, perhaps by not putting

enough faith in your instrument.

But there is another way you can get artificially small values for χ̂2. This will occur if your

measurements are correlated. Suppose, for example, that by mistake you include the same mea-

surements several times in your fit. Then your measurements are no longer independent. Cowan

discusses this possibility in his §7.6.

High values of χ̂2 indicate that the model is not perfect and could be improved by the use of

a different model, such as the addition of more parameters—or, alternatively, that you think your

equipment works better than it really does and you are ascribing less error to your datapoints than

they really have. And in this case, using equation 8.10 instead of 8.9 is disastrous.

Think about your results.

8.5.4. When your measurements are correlated. . .

One more point, a rather subtle one. There are circumstances in which your datapoints are not

independent. Then the formulation of chi-square fitting (and least-squares fitting, for that matter)

is more complicated. You need to calculate the covariance matrix for the measured values ym; call

this covariance matrix V. If this matrix is not unitary, then χ2 is no longer given by equation 8.8i.

Rather, it is given by

χ2 = δYT
χ ·V−1 · δYχ . (8.11a)

Of course, this leads to a different expression for a, which replaces equation 8.8f,

4To understand this comment about ∆χ
2 = 1, see §9.
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a = (XT
χ ·V−1 ·Xχ)

−1·XT
χ ·V−1 ·Yχ , (8.11b)

and also to a different equation for the covariance matrix,

[αχ]
−1 = (XT

χ ·V−1 ·Xχ)
−1 . (8.11c)

Correlated datapoints can occur when the measured ym are affected by systematic errors or

instrumental effects. Cowan §7.6 discusses this case. For example, suppose you take an image with

a known point-spread function (psf) and want to fit an analytic function to this image. Example:

a background intensity that changes linearly across the field plus a star. Here the independent

variables in the function are the (x, y) pixel positions and the data are the intensities in each pixel.

You’d take the intensity in each individual pixel and fit the assumed model. But here your data

values are correlated because of the psf. Because you know the psf, you know the correlation

between the various pixels. Such a formulation is required for CBR measurements because of the

sidelobes of the radio telescope (which is just another way of saying “psf”).

Another case of correlated measurements occurs when your assumed model is incorrect. This

is the very definition of correlation, because the residual δym is correlated with the data value

ym. But how do you calculate V? If you could do a large number J of experiments, each with

M datapoints producing measured values ym,j , each measured at different values of xm, then each

element of the covariance matrix would be Vmn =
∑

j(ym,j − ym)(yn,j − yn). You don’t normally

have this opportunity. Much better is to look at your residuals; if the model doesn’t fit, use another

one!

Normally, and in particular we assume everywhere in this tutorial, the measurements are

uncorrelated, so one takes V = I (the unitary matrix).

9. CHI-SQUARE FITTING AND WEIGHTED FITTING: DISCUSSION

INCLUDING COVARIANCE

9.1. Phenomenological description

Consider the first two coefficients in our example of §5.2. In this example, the fit gives y =

A0 + A1t + A2t
2, where the numerical values are given in vector form by equation 4.12. The

coefficient A0 is the y-intercept and A1 is the slope. They have derived values A0 = 96 ± 34 and

A1 = 4± 9.

Remember what these uncertainties really mean: in an infinity of similar experiments, you’ll

obtain an infinity of values of (A0, A1) that are normally distributed with dispersions (34,9). Loosely
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speaking, this means that A0 lies between (96− 34 = 62) and (96 + 34 = 130) and A1 lies between

−5 and 13.

Suppose you are interested in knowing about A0 without regard to A1. By this we mean that

as A0 is varied from its optimum value of 96, χ2 increases from its minimum value. As we vary A0,

if we allow A1 to take on whatever value it needs to for the purpose of minimizing χ2, then this is

what we mean by “knowing about A0 without regard to A1”. For this case, the uncertainty of A0

is indeed 34. Ditto for A1. In other words, equations 3.7, and 8.9 apply.

However, if you are interested in knowing about both, you must include their covariance. In our

example, the large negative covariance follows logically just from looking at a graph: if you fit some

points, all of which lie at positive t, then a more negative derived slope will raise the y-intercept.

Specifically, the large negative covariance means that positive departures of A0 are associated

with negative departures of A1. So even though the individual values δA0 = +34 and δA1 = +9

are acceptable, you cannot conclude that the pair of values (δA0, δA1) = (+34,+9) is acceptable,

because this pair has both positive. In contrast, what is acceptable here would be something like

(δA0, δA1) = (+34,−9).

We stress that the acceptable ranges of values depend on what you are interested in. This is

sort of like the observer’s influence in quantum mechanics. If you are interested in A1 alone, then

you can say A1 = 4± 9 and, in making this statement, you have to realize that, as A1 varies over

this range, A0 can vary over (formally, at least) the range (∞→ −∞): you just don’t give a damn

what happens to A0 because you’re not interested. But the moment you become interested and

restrict its possible range, that influences the possible range for A1, too.

There is no simple relationship between the covariance matrix elements and the acceptable

ranges. For two variables, the best way to express this is to construct the ellipses that define

the loci of constant ∆χ2 and present them on a graph with axes (δa0, δa1) as in BR Figure 11.2

or NR Figure 14.5.4. For three variables, these ellipses become ellipsoids; for four, they become

four-dimensional volumes, etc.

We illustrate these concepts for the (a1, a2) parameters in our numerical example. We sub-

tracted 7.75 from all times so that the covariance would be small enough to illustrate the difference

between the tangents to the ellipses and the end points of the ellipses. Contours are calculated

as described in §9.5 and are at ∆χ2 = 1 and 2.3. The dashed horizontal and vertical lines are at

δa = ±σa.

First consider the pair of vertical lines, which are drawn at δa1 = ±σa1 , where σ is the square

root of the variance of the parameters as described in equations 3.7, 4.11, 8.9, and 8.10. If the

datapoints were projected downward, i.e. look at the marginal pdf of δa1 by taking small strips of

δa1 and integrating over δa2, the marginal pdf of δa1 is Gaussian; ditto for the other coordinate.

Thus, 68% of the points lie between these dashed lines. This is what we mean by the phrase “being

interested in knowing about a1 without regard to a2”. If we allow a2 to vary so as to minimize χ2
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Fig. 9.1.— Illustrating the meaning of variance and covariance between (a1, a2) for our numerical

example. See text for discussion.

as we consider departures δa1, then the pdf of δa1 has dispersion σa1 . Alternatively, we can say

that in a large number of experiments, the pdf of δa1 follows a chi-square pdf with one degree of

freedom if we don’t care what happens to δa2.

If, however, we are concerned about the pair, then we must look not at the projection down

one axis or the other, but rather at the two-dimensional distribution. This is characterized by

the tilted ellipses. Here, for a large number of experiments, the pair (a1, a2) follows a chi-square

distribution with 2 degrees of freedom (if we don’t care about a0; if we do, it’s 3 degrees of freedom

and the ellipse becomes an ellipsoid, but this is very hard to plot!). For ν = 2, 68.3% of the points

lie within ∆χ2 = 2.3, where we have drawn the outer contour in Figure 9.1. The points inside this

ellipse are darker; 68.3% of the points lie within that ellipse.
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The best description of the specifics of calculating these ellipsoids is in BR §11.5 (Confidence

Intervals, Confidence Levels for Multiparameter Fits). To describe it, we’ll talk specifically about

our numerical example, which has M = 4 measurements and N = 3 unknowns. The unknowns are

a = [a0, a1, a2]. We’ll first begin by discussing the case of a single parameter; then we’ll generalize.

9.2. Calculating the uncertainties of a single parameter—gedankenexperiment

First, suppose we want to know the value σa0 without regard to the values of a1 and a2. Having

already done the solution, we know the chi-square value of a0 so we consider variations δa0 around

this best value.

Pick a nonzero value of δa0 and redo the least-squares solution for [a1, a2]; because of the

covariance, these adopt values different from those when δa0 = 0. This gives a new value for χ2

which is, of course, larger than the minimum value that was obtained with δa0 = 0. Call this

difference ∆χ2
δa0

. Determine the dependence of ∆χ2
δa0

upon δa0 and find the value of δa0 such that

∆χ2
δa0

= 1. This is the desired result, namely the value σa0 without regard to the values of a1 and

a2.

This value is σ2
a0 = [αχ]

−1
00 , the same result quoted in equation 8.10.

Consider now what you’ve done in this process. For each least-squares fit you used a trial value

of δa0. In specifying δa0 you had exactly one degree of freedom because you are fixing one and only

one parameter. Having done this, you could do a large number of experiments (or Monte Carlo

trials) to determine the resultant distribution of ∆χ2
δa0

. It should be clear that this distribution

follows a chi-square distribution with one degree of freedom (ν = 1). So the uncertainty σa0 is that

value for which ∆χ2
δa0

= 1. (The chi-square fit for the other two parameters has M − 2 degrees

of freedom, but this is irrelevant because—by hypothesis—you don’t care what happens to those

variables.)

9.3. Calculating the uncertainties of two parameters—gedankenexperiment

Suppose we want to know the value (σa0 , σa2) without regard to the value of a1. Now we

consider variations (δa0, δa2) around the best values (a0, a2).

Pick values for (δa0, δa2) and redo the least-squares solution for a1. This gives a new value for

χ2 which is, of course, larger than the minimum value that was obtained with (δa0, δa2) = 0. Call

this difference ∆χ2
(δa0,δa2)

. As above, this follows a chi-square distribution, but now with ν = 2.

Determine the dependence of ∆χ2
(δa0,δa2)

upon (δa0, δa2) and find the set of values of (δa0, δa2)

such that ∆χ2
(δa0,δa2)

= 2.3. This is the desired result, namely the ellipse within which the actual

values (δa0, δa2) lie with a probability of 68.3%, without regard to the value of a1.
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These values can be defined in terms of the curvature matrix [αχ], as we discuss below.

Consider now what you’ve done in this process. For each least-squares fit you used trial values

of (δa0, δa2). In specifying them you had exactly two degrees of freedom because you are fixing two

parameters. This distribution follows a chi-square distribution with two degree of freedom (ν = 2).

So the uncertainty σa0 is that value for which ∆χ2
δa0

= 2.3, which follows from the integrated

probability for the chi-square distribution for ν = 2. (The chi-square fit for the third parameter a1
has M − 1 degrees of freedom, but again this is irrelevant.)

One can expand this discussion in the obvious way. Consider finally. . .

9.4. Calculating the uncertainties of three parameters—gedankenexperiment

Suppose we want to know the values of all three parameters (or, generally, all N parameters).

Then we pick trial values for all three. There is no least-squares fit for the remaining parameters,

because there are none. For each combination of the three (or N) parameters we obtain ∆χa, which

defines a 3- (or N -) dimensional ellipsoid. This follows a chi-square distribution with ν = 3 (or N).

We find the (hyper)surface such that ∆χa is that value within which the integrated probability is

68.3%. This defines the (hyper)surface of σa.

9.5. Doing these calculations the non-gedanken easy way

The obvious way to do the gedanken calculations described above is to set up a grid of values

in the parameters of interest (δan); perform the chi-square fit on the remaining variables, keeping

track of the resulting grid of χ2; and plot the results in terms of a contour plot (for two parameters

of interest) or higher dimensions.

There’s an easier way which is applicable unless you are doing a nonlinear fit and the parameter

errors are large5. The curvature matrix [αχ] of equation 8.8d contains the matrix of the second

derivatives of χ2 with respect to all pairwise combinations of δan, evaluated at the minimum χ2;

it’s known as the curvature matrix for this reason. Clearly, as long as the Taylor expansion is good

we can write

∆χ2
a = δaT · [αχ] · δa . (9.1)

Knowing the curvature matrix, we don’t have to redo the fits as we described above. Rather, we

can use the already-known matrix elements.

5In which case you use the gedanken technique!
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Suppose, however, that you are interested in an Ni (for “Ninterested”) subset of the N param-

eters, and you want to know their variances (and covariance matrix) without regard to the values

of the other (N −Ni) parameters. You could use the gedanken technique, but you can also use the

“non-gedanken easy way” by using the following procedure [see NR §15.6 (Probability Distribution

of Parameters in the Normal Case)].

1. Decide which set of parameters you are interested in; call this number Ni and denote their

vector by ai. Here we use the above example and consider Ni = 2 and ai = [a0, a2].

2. From the N × N covariance matrix [αχ]
−1, extract the rows and columns corresponding to

the Ni parameters and form a new Ni×Ni covariance matrix [αχ]
−1
i ; in our case the original

covariance matrix is

[αχ]
−1 = XXI =




1156.8125 −303.000 18.4375

−303.000 81.000 −5.000
18.4375 −5.000 0.31250


 (9.2a)

and it becomes

[αχ]
−1
i = XXI =

[
1156.8125 18.4375

18.4375 0.31250

]
. (9.2b)

3. Invert this new covariance matrix to form a new curvature matrix [αχ]i. The elements differ

from the those in the original curvature matrix.

4. As usual, we have

∆χ2
ai

= δaTi · [αχ]i · δai , (9.3)

so find the locus of ai such that the integrated probability of ∆χai
for ν = Ni contains 68.3%

of the space; e.g. for ν = 2 this is ∆χai
= 2.3.

You may well wonder why, in steps 2 and 3, you need to derive a new curvature matrix from

the extracted elements of the original covariance matrix. Why not just use the extracted elements

of the original curvature matrix? To understand this, read NR’s discussion surrounding equation

(15.6.2); this is not very clear, in my opinion. I find it easier to recall the way covariance matrices

propagate errors according to the derivatives of the quantities derived, as in Cowan’s equation 1.54.

I could explain this here but, quite frankly, don’t have the time; maybe in the next edition of these

notes!
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9.6. Important comments about uncertainties

Having said all the above, we offer the following important Comments:

• The easiest way to calculate these (hyper)surfaces is to set up a grid in Ni-dimensional space

of trial values for δai and use a contour plot or volume plot package to plot the loci of constant

∆χ2
ai
.

• The procedure described in §9.5 works well for linear fits, or nonlinear fits in which the σa
are small so that ∆χ2 is well-approximated by the second derivative curvature matrix. This

is not necessarily the case; an example is shown in BR Figure 11.2. Here, the higher-order

curvature terms are important and it’s better to actually redo the fit for the grid of trial values

of ai as described above in §9.2, 9.3, and 9.4. In other words, use the gedanken technique.

• The variance (i.e., uncertainty squared) of the derived parameters a depends only on the

elements in the covariance matrix [αχ]
−1. These, in turn, depend only on the curvature

matrix [αχ]—which depends only on Xχ. This matrix Xχ is the matrix of the quantities that

are known exactly. For example, we began with the example in which the elements of Xχ

were the times at which the measurements were taken.

Generally, then, the curvature and covariance matrix elements depend on the locations of the

datapoints (the ensemble of tm in equation 0.1) but not on the measured values (the ensemble

of ym in equation 0.1). And on your adopted values for σmeas,m. Because of this. . .

• Think before making your measurements about the covariance matrix and how to minimize

the off-diagonal elements. By taking measurements at well-chosen times, or well-chosen values

of the independent variable xm whatever it is, you can really optimize the accuracy-to-effort

ratio! For example, in our numerical example if you can get a few measurements at negative

times your efforts will be repaid in terms of much better accuracy for the y-intercept.

10. BRUTE FORCE CHI-SQUARE AND THE CURVATURE MATRIX

10.1. Parameter Uncertainties in Brute Force chi-square Fitting

There are times when “brute force” least squares is appropriate. For example, if you have

a nonlinear problem in which taking derivatives is complicated, and if the number of unknown

coefficients is small, then it might be easier to search through the coefficient parameter space,

calculate the χ2 or s2 for each combination of parameters, and find the minimum. This provides

the best-fit parameter values.

How about the parameter uncertainties? Simple: use the concept of ∆χ2 from §9. Here we

describe the case for a single parameter fit; call this parameter a. Generalizing to more parameters

is straightforward.
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For a chi-square fit, getting the uncertainty is easy. Calculate χ2 as a function of the guessed

values of a. As usual, define ∆χ2 as χ2 minus its minimum value; the minimum value gives the best

estimate of a. The uncertainty in a is that offset where ∆χ2 = 1. In other words: ∆χ2 = [αχ,00]∆a2,

so the uncertainty in a is 1√
[αχ,00]

=
√
[α−1

χ,00] (See §9).

For a least-squares fit, it’s exactly the same idea. A least-squares fit implies that the measure-

ment uncertainties σm are all identical, equal to σ. Thus, the sample variance s2 = 1
M−1

∑
∆y2m

is equal to χ2σ2

(M−1) . In other words, χ2 = (M−1)
σ2 s2, which has expectation value (M − 1). Therefore,

the uncertainty in a is that offset where ∆χ2 = 1, i.e. where ∆s2 = σ2

(M−1) .

To be totally explicit: For the fitted value of afit, the sample variance is

s2min =
1

M − 1

∑
(ym − afit)

2 (10.1)

As a is moved from its fitted value, s2 increases, so we can speak of the minimum sample variance

s2min. As we move a from its fitted value by amounts ∆a, the uncertainty in a is that value of ∆a

for which s2 increases by
s2min

M−1 , i.e. that value of ∆a for which

∆s2 = s2 − s2min =
s2min

M − 1
(10.2)

11. USING SINGULAR VALUE DECOMPOSITION (SVD)

Occasionally, a normal-equation matrix [α] = XT ·X is degenerate, or at least sufficiently

ill-posed that inverting it using standard matrix inversion doesn’t work. In its invert function,

IDL even provides a keyword called status to check on this (although I find that it is not perfectly

reliable; the best indicator of reliability is to check that the matrix product [α−1]·[α] = I, the

unitary matrix). In these cases, Singular Value Decomposition (SVD) comes to the rescue.

First, we reiterate the least-squares problem. Least squares begins with equations of condition

(equation 2.2), which are expressed in matrix form as

X · a = y (11.1)

In our treatments above we premultiply both sides by XT, on the left generating the curvature

matrix [α] to obtain the normal equations (equation 2.3 or its equivalent derived from equations

8.8)

[α]·a = XT · y , (11.2)
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for which the solution is, of course,

a =
(
[α]−1·XT

)
·y (11.3)

We need to find the inverse matrix [α]−1. Above in this document we did this using simple matrix

inversion, which doesn’t work if [α] is degenerate.

SVD provides a bombproof and interestingly informative way do least squares. Perhaps sur-

prising, with SVD you don’t form normal equations. Rather, you solve for the coefficients directly.

In essence, SVD provides the combination
(
[α]−1·XT

)
without taking any inverses. By itself, this

doesn’t prevent blowup for degenerate cases; however, SVD provides a straightforward way to

eliminate the blowup and get reasonable solutions.

For a discussion of the details of SVD, see NR §2.6; for SVD applied to least squares, see NR

§15.4; if you are rusty on matrix algebra, look at NR §11.0. Below, we provide a brief description

of SVD. Implementing SVD in our least-squares solutions is trivially easy, and we provide the IDL

prescription below in §11.5 and §11.5.2. Be sure to look at §11.3!!

11.1. Phenomenological description of SVD

The cornerstone of SVD is that our (or any) M ×N (M rows, N columns) matrix X, where

M ≥ N , can be expressed as a product of three matrices:

X = U·[w]·VT , (11.4)

where

1. U is M ×N , [w] is N ×N and diagonal, and V is N ×N ; and

2. the columns of U and V are unit vectors that are orthonormal. Because V is square, its

rows are also orthonormal so that V ·VT = I. Recall that, for square orthonormal vectors,

the transpose equals the inverse so VT = V−1. Similarly, because U has columns that are

orthonormal, the matrix product UT ·U = IN×N (the N ×N unitary matrix).

3. The columns of VT, which are orthonormal vectors, are the eigenvectors of [XT ·X]. That

is, in our case, they are the eigenvectors of the curvature matrix of X. That is, they define

the principal axes of the error ellipsoid ∆χ2; see NR §14.5.

4. The eigenvalues of [XT ·X] are [w2], i.e. the squares of the diagonal elements in [w].

So what?
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Consider a single row (measurement number m) of the matrix X. This row has a single value

of xm, with an associated value of ym. For this row, we can consider the entry of each column n

of X to be a basis function fn(xm), evaluated at xm. The N columns contain N basis functions.

And, of course, we have N coefficients in the vector a. These N basis functions and associated

coefficients represent the entire set of M measurements ym taken at positions xm.

Now consider a single column (function and coefficient number n) of the matrix X. This

column consists of the entire set of M values of fn(xm) for a single value of n. We can regard the

M values of xm to be a vector of length M . Similarly, we can regard each column n of X to be an

M -length vector consisting of the elements fn(xm).

Finally, consider the set of N columns of the matrix X. Each column n is an M -element vector

with elements fn(xm). Now, there is no reason for these N column vectors of X to have any special

property, such as being orthogonal. In fact, consider a typical least-squares polynomial fit; this

basis set is certainly not orthogonal, as we illustrated in our simple numerical example of §4. What

SVD does is to replace the set of N original nonorthogonal vectors X by an orthogonal basis set

that consists of the N rows of V—in fact, they are not only orthogonal, but orthonormal.

11.2. Using SVD for Least Squares

Some of the original nonorthogonal column vectors of X might not only be nonorthogonal,

they might be degenerate! This happens if the particular set of the M values xm make some of

the original nonorthogonal vectors linear combinations of others. This leads to the unfortunate

situation of the curvature matrix α not having an inverse. In such cases, SVD comes to the rescue.

With SVD you don’t form normal equations, so you don’t explicitly calculate [α]−1. We apply

SVD to X, as in equation 11.4:

X = U·[w]·VT , (11.5)

If we express the covariance matrix in these SVD terms, we get

[α−1] = V·
[
1

w2

]
·VT (11.6)

Here’s the proof:

[α] = XT ·X (11.7a)

Using equation 11.4 or 11.5 for the SVD representation of X, we have

[α] = [U·[w]·VT]T · [U·[w]·VT] (11.7b)
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Remembering that w is diagonal so that wT = w, that UT ·U = IN×N , and the matrix identity

[a · b]T = bT · aT, we have

[α] = V·[w2]·VT (11.7c)

Finally, take the inverse (using the matrix identity [a · b]−1 = b−1 · a−1 and also VT = V−1); this

gives the result of equation 11.6.

Given equation 11.6, the fact that VT ·V = I, and the general matrix identity (a · b)T = bT · aT,
it’s straightforward to show that

a =

(
V·
[
1

w

]
·UT

)
·y (11.8a)

or

a =

(
V ·

[
1

w

])
·
(
UT·y

)
(11.8b)

Here in equation 11.8a, we see that
(
V·
[
1
w

]
·UT

)
is identical to

(
[α]−1·XT

)
in equation 11.3. In

the rewritten equation 11.8b we see that we can regard the coefficient vector being defined by the

orthogonal vectors of V. Moreover, the covariance matrix of equation 11.6 is diagonal, so that the

principal axes of the χ2 ellipse are defined by the orthonormal column vectors of V with lengths

proportional to
[

1
w2

]
. See NR Figure 15.6.5 and the associated discussion.

The N orthonormal vectors in V define an N -dimensional space for a with N orthogonal

directions. Suppose that a particular value wn is small. In equation 11.5, this means that the

associated orthonormal vector vn—i.e., the associated direction n—in V is not well-represented

by the set of original nonorthogonal vectors in X. This, in turn, means that you can’t represent

that direction in a of equation 11.8a without amplifying that orthonormal vector by a large factor;

these amplification factors ∝ w−1
n . This is an unsatisfactory situation because it means some

combinations of the original m measurements are highly weighted. As wn → 0 this situation

becomes not only unsatisfactory, but numerically impossible.

Consider the limiting case, wn = 0. In this case, the original xm values do not have any

projection along associated orthonormal vector vn in V. (These vn are called “null” orthonormal

vectors.) In equation 11.8a, you can add any multiple of the null vn to the solution for a and it

won’t change a at all (!) because it has absolutely no effect on the fit to the data (because of the

particular set of values xm).

What multiple is appropriate? Common sense says that, because these V vectors have no

meaning for the solution, the multiple should be zero. So in equation 11.8a, instead of trying, in

vain, to include this null vector vn by using a huge multiple, you toss in the towel and eliminate
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it altogether by replacing its corresponding w−1
n = ∞ by w−1

n = 0. So we have the rule: wherever

wn = 0 (or sufficiently small), replace w−1
n by 0! This replacement provides the minimum length

for x and thereby constitutes the least-squares solution.

11.3. Important Conclusion for Least Squares!!!

Suppose you have degeneracy, or near-degeneracy. This, in turn, means that the formulation of

the least-squares model is faulty: some of the original basis functions represent (or nearly) represent

the same physical quantity, or at least one of the functions is (nearly) a linear combination of

others. Sometimes you can discover the problem and fix it by imposing additional constraints, or

by finding two unknown coefficients that are nearly identical. If so, you can reformulate the model

and try again.

Even if you can’t discover the root cause(s) and remove the degeneracy, the SVD solution allows

you to bypass problems associated with degeneracy and provides reasonable best-fit parameter

values.

11.4. How Small is “Small”?

When looking at wn, just exactly how small is “small”?

11.4.1. Strictly Speaking. . .

Strictly speaking, this is governed by numerical machine accuracy. NR suggests measuring this

by the ratio of the largest wn to the smallest. This ratio is the condition number. Single precision

32-bit floats have accuracy ∼ 10−6, so if the condition number is larger than 106 you certainly have

problems.

11.4.2. Practically Speaking. . .

Practically speaking it’s not machine accuracy that counts. Rather, it’s the accuracy of your

data and the ability of those uncertain data to define the parameters. In any real problem, plot

the vector w. If the values span a large range, then the data with small wn might not be defining

the associated vectors well enough. If so, then practically speaking, these vectors are degenerate.

How to tell what constitutes “small wn”? As far as I know, and as far NR says, it’s an art.
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11.5. Doing SVD in IDL

11.5.1. IDL’s SVD routine la svd

IDL’S la_svd procedure6 provides the SVD decomposition. Thus for equation 11.4, the IDL

SVD decomposition is given by

la svd,X,w,U,V ; (11.9)

the notation is identical to that in equation 11.4.

11.5.2. My routine lsfit svd

Implementing a least-squares SVD fit requires the ability to modify the weights. I’ve written

an IDL routine lsfit_svd that makes the above process of dealing with the weights easy. When

used without additional inputs, it returns the standard least-squares results such as the derived

coefficients and the covariance matrix; it also returns [w], U, and V. It allows you to input those

matrices and, also, the
[
1
w

]
matrix so that you can tailor the weights to your heart’s content.

12. REJECTING BAD DATAPOINTS II: STETSON’S METHOD PLUS

CHAUVENET’S CRITERION

Chauvenet’s criterion is an on-off deal: either you include the datapoint or you don’t. This

makes sense from a philosophical point of view: either a datapoint is good or not, so you should

either include it or exclude it.

However, when doing a nonlinear fit this presents a problem. As you iterate, the solution

changes, and a given datapoint can change from being “bad” to “good”. Or vice-versa. You can

imagine being in a situation in which the iteration oscillates between two solutions, one including a

particular datapoint and the other excluding it; the solution never converges, it just keeps chasing

its tail.

Enter Stetson’s beautiful technique7. Stetson reasons that we shouldn’t have an on-off criterion.

Rather, it should relieve a datapoint of its influence adiabatically: as its residual gets larger and

6Old versions of IDL (before 5.6) had a significantly worse algorithm called svdc. Don’t use this unless you have

to.

7Stetson is one of those anomalies, a true expert on fitting. He invented many of the stellar photometry routines

used in daophote, all of which use least-squares techniques. He provides a lively, engaging discussion of many

fascinating and instructive aspects in his website: http://nedwww.ipac.caltech.edu/level15/Stetson/Stetson4.html.
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larger, its weight gets smaller and smaller. With this, in nonlinear fitting all datapoints are always

included and their weights automatically adjust as the fit parameters home into their correct values.

And you can’t get into the chasing-tail syndrome that can happen with the strict on-off inclusion.

12.1. Stetson’s sliding weight

Stetson recommends using a sliding weight. To explain this, we review the ML concept of

chi-square fitting. We define chi-square as

χ2 =
M−1∑

m=0

(ym − a · f(xm))2

σ2
m

, (12.1a)

and we minimize χ2 by setting its derivative with respect to each parameter an equal to zero:

dχ2

dan
= −2

M−1∑

m=0

fn(xm)∆ym
σ2
m

. (12.1b)

Here ∆ym = (ym − a · f(xm)). For each coefficient an setting this to zero gives

M−1∑

m=0

fn(x)∆ym
σ2
m

= 0 . (12.1c)

Now we wish to modify this equation by introducing a weight w(|∆ym|) that makes datapoints

with large |∆ym| contribute less, so it reads like this:

M−1∑

m=0

w(|∆ym|)fn(xm)∆ym

σ2
m

= 0 . (12.2)

It’s clear that we need the following properties for w(∆ym):

1. w(∆ym) = w(|∆ym|), meaning simply that it should depend on the absolute value of the residual

and not bias the solution one way or the other.

2. w(|∆ym|) → 1 as |∆ym| → 0, meaning that datapoints with small residuals contribute their

full weight.

3. w(|∆ym|) → 0 as |∆ym| → ∞, meaning that datapoints with large residuals contribute nothing.
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Stetson recommends

w(|∆ym|) =
1

1 +
(
|∆y|
ασ

)β . (12.3)

This function w(|∆ym|) has the desired properties. Also, for all β it equals 0.5 for |∆ym| = ασ. As

β → ∞ the cutoff gets steeper and steeper, so in this limit it becomes equivalent to a complete

cutoff for |∆ym| > ασ.

Stetson recommends α = 2 to 2.5, β = 2 to 4 on the basis of years of experience. Stetson is

a true expert and we should take his advice seriously; he provides a vibrant discussion to justify

these choices in real life, including an interesting set of numerical experiments.

However, for large M I see a problem with the choice α = 2 to 2.5. For large β, for which the

cutoff is sharp, it seems to me that the cutoff should duplicate Chauvenet’s criterion. Referring to

equation 6.5, this occurs by setting

α =
√
2 erf−1

(
1− 1

2M

)
(12.4)

and I recommend making this change, at least for problems having reasonably large M ; this makes

α larger than Stetson’s choice. I’m more of a purist than Stetson, probably because I’m a radio

astronomer and often fit thousands of spectral datapoints that are, indeed, characterized mainly

by Gaussian statistics. Stetson is an optical astronomer and probably sees a lot more departures

from things like cosmic rays. Nevertheless, in a CCD image with millions of pixels, of which only a

fraction are characterized by non-Gaussian problems such as cosmic ray hits, it seems to me only

reasonable to increase α above Stetson’s recommended values by using equation 12.4.

12.2. Implementation of the weight in our matrix equations

Clearly, implementing Stetson’s method requires a weighted fit, so you have to use the chi-

square technique discussed in §8. There equation 8.6 defines a matrix of weights (which is diagonal)

in which

Wm,m =
1

σm
. (12.5)

Comparing this with equation 12.1c, it’s clear what to do: we modify this equation to read

Wm,m =
w

1/2
m

σm
, (12.6)
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where the weight wm is defined in equation 12.3.

Now you must not forget here that the solution depends on the weights wm, which in turn

depend on the solution. Thus when you implement this technique you must iterate until the solution

converges by not changing.

13. MEDIAN/MARS, INSTEAD OF LEAST-SQUARES, FITTING

Least-squares fitting minimizes the squares of the residuals. This means that datapoints having

large residuals contribute importantly to the fit. If these datapoints are really bad, you’ve got

problems; this is why it’s important to get rid of outliers! Sometimes you’re faced with a set of

datapoints that look bimodal: most datapoints have a Gaussian-like pdf, and many lie outside the

main distribution; sometimes it’s difficult to decide where to draw the line between outliers and

good datapoints. Or you might have non-Gaussian statistics. In these cases, using least squares

might not be a great idea because least squares gives greatest weight to the datapoints having the

largest residuals, but you don’t know what the residuals are until after you’ve done the fit—and

the fit is influenced, and maybe even dominated, by the outliers!

In these cases the median is often a good solution. The median is the solution for which there

are as many positive as negative residuals, irrespective of how big they are. The median works

especially well when the discrepant datapoints are asymmetrically distributed with respect to sign.

The median isn’t always appropriate: for example, for pdfs that are symmetrically dominated

by large residuals and have few small ones, datapoints near the expectation value are few and far

between so the median has high error. Also, if the statistics are Gaussian then the error of the

median is somewhat greater than that of the mean (by a factor of something like π
2 ; I forget, but

it’s straightforward to calculate).

If you have non-Gaussian statistics, then apply to your situation these somewhat contradictory

introductory remarks both extolling and trashing the median. If you decide that a median fit is

appropriate, read on!

13.1. The Median versus the MARS

Consider ARS, the sum of the absolute values of the residuals (the Absolute Residual Sum)

and suppose we want to minimize this. This is the MARS: the Minimum Absolute Residuals Sum.

For the standard median (that takes the “average” of a bunch of numbers), the MARS is identical

to the median. This isn’t true for more complicated functions, as we briefly discuss in the next two

subsections.
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13.1.1. For the Standard Median—it’s the MARS

When we take the median of a bunch of points that’s like taking a biased average of the points.

In this case the residual ∆ym = ym− yMARS , where yMARS is the derived median value. Normally

we take the median by finding that datapoint for which the number of positive residuals is equal

to the number of negative ones.

Here we take a more general approach. First, write the ARS as a function of the a trial value

yARS ; we will find that the median value is yMARS , the one that gives the minimum of the ARS.

So write

ARS(yARS) =
M−1∑

m=0

|(ym − yARS)| =
M−1∑

m=0

|∆ym| (13.1a)

The absolute value signs are horrible to deal with, so we rewrite this as

ARS(yARS) =
∑

∆ym>0

(ym − yARS)−
∑

∆ym<0

(ym − yARS) (13.1b)

To find the minimum of the ARS we take its the derivative with respect to yARS and set it equal

to zero. The derivative of each term is equal to −1, so we get

dARS

dyARS
=
∑

∆y>0

1−
∑

∆y<0

1 = M(∆y > 0)−M(∆y < 0) (13.2)

Setting this equal to zero requires choosing M(∆y > 0) = M(∆y < 0). In plain English: yMARS is

that value of yARS which provides equal numbers of positive and negative residuals.

This is the very definition of the median! Thus, for the “average” of a bunch of numbers, the

median is the same as the MARS.

The median is defined unambiguously only if M is odd: the median datapoint then has equal

numbers with positive as negative residuals. If M is even, then the median lies anywhere between

the two middle points. Similarly, the ARS doesn’t change between the two middle points because

as you increase the residual from one point the residual from the other decreases by an identical

amount, so the sum of the absolute values doesn’t change.

13.1.2. For an arbitrary function, e.g. the slope—it’s a weighted MARS

Things change if we are fitting a function other than the “average” (i.e., the standard median).

Suppose, for example, that we want to fit the slope s using MARS. Then ym = sMARSxm so the
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analog to equation 13.1a is

ARS(sARS) =
M−1∑

m=0

|(ym − xmsARS)| =
M−1∑

m=0

|∆ym| (13.3)

Carrying out the same steps, the analog for equation 13.2 becomes

dARS

dsARS
=
∑

∆y>0

xm −
∑

∆y<0

xm (13.4)

This is no longer the median. Rather, it’s a weighted ARS, or WARS. In calculating the ARS, each

datapoint is weighted by its x value.

This weighting is exactly the same weighting that would occur in a standard least-squares fit

for the slope. To show this, carry out the steps in equations 12.1 for a single function f(x) = sx.

This makes sense because points with large x are intrinsically able to define the slope better than

points with small x.

Fig. 13.1.— Illustrating the difference between the median and weighted MARS fits for a slope.
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Let’s explore the effect of this weeighted MARS by considering a simple example, shown in

Figure 13.1. Five datapoints are shown with black circles. The dashed line is the median fit; there

are two points above and two below the line, so it is the true median. But this fit is unsatisfying

because it’s the datapoints at large x that matter for determining the slope.

The solid line is the weighted MARS fit. This is satisfying because the points at large x cluster

around it instead of lying to one side, and the points at small x (which have comparable residuals

to the others) don’t (and intuitively shouldn’t) matter as much.

Our intuition, as well as the math in equation 13.4, tells us that the weighted MARS is the

appropriate choice. This is valid for not only this example, but for any combination of functions

such as the general case formulated in equations 12.1.

13.2. The General Technique for Weighted MARS Fitting

By being clever with weights wm we can formulate a general technique for weighted MARS

fitting8. Consider chi-square fitting the function y = a · f(x), in which a is an N -long vector of

unknown parameters and f(x) a set of N basis functions. In §12.1 we reviewed the definition of χ2

and the resulting equations for minimization; this discussion culminated in equation 12.2 in which

we included a weight wm, specified by the user to accomplish some particular objective. We repeat

that equation here:

M−1∑

m=0

wmfn(xm)∆ym
σ2
m

= 0 . (13.5)

Here our objective is reproduce the spirit of equation 13.4, in which all dependence ∆ym (but

not on fn or σ2
m) is removed so that the sum is the multifunction equivalent of equivalent of equation

13.4. To accomplish this, we simply choose

wm =
1

|∆ym|
. (13.6)

So weighted MARS fitting is just another version of the sliding weight technique of §12.1.

8It is fortunate that weighted MARS, instead of median, fitting is what we want. Otherwise we could not formulate

the solution using wm because, when y depends on more than one function of x, one would need a separate weight

for each function—and that is completely incompatible with the general least-squares approach.
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13.3. Implementation, a Caution, and When To Stop Iterating

Implementation: To implement MARS fitting, you include a factor w
1/2
m in the diagonal ele-

ments of equation 8.6. Begin with wm = 1 and iterate.

A caution: You might get too close to one point, making its ∆ym,central → 0. Then in equation

13.6 wm,central →∞ and your solution goes crazy. You can build in a limit to take the lesser value,

i.e. something like wm = (109 < 1/|∆ym|) (< means “whichever is smaller”).

When to stop? You might think that all you need to do is keep track of the minimum value

of |∆ym| and stop when this minimum value stops changing by very much. In my experience, this

doesn’t work very well. It’s far better to keep tract of the corrections to each and every parameter

that are derived on successive iterations. When you reach convergence, these corrections will

asymptotically approach zero.

13.4. Errors in the Derived Parameters

In conventional least squares, you use the covariance matrix and the variance of the datapoints,

as in equation 3.7. This is definitely not what you want here. For example, suppose you have a

singly wildly discrepant datapoint and evaluate σ2 in the usual way. Then the sum
∑

∆y2m reflects

that single datapoint and this colors all the derived errors. This isn’t fixed by using the reduced

chi-square χ̂2, which will be nowhere near unity. Replacing the sum of residuals squared by the ARS

seems reasonable until you realize that the MARS coefficient values are completely independent of

the residuals—yet, you’d expect the errors to be smaller for better data! A similar concern holds

for replacing the ARS by its weighted counterpart.

My current—but untested—recommendation is this. Suppose you have M datapoints. Con-

ventionally, we define the +1σ dispersion by the boundary where 34.2% of the points lie outside

the limit, and ditto for the −1σ boundary. These boundaries are defined only by the number of

daapoints outside the boundaries, not how big the residuals are. We can do the same here. Define

the sample variance not by the sum-of-squares of residuals as in equation 3.1, but rather by how

far away from the MARS fitted line you need to go before 34.2% of the points lie outside the

plus-and-minus boundaries. Then use this fake variance in equation 3.7.

13.5. Pedantic Comment: The MARS and the Double-sided Exponential pdf

In fact, there is a specific pdf for which the MARS is the theoretically correct solution: the

double-sided exponential. Here the pdf of the measured datapoints is

p(∆ym) =
e−|∆ym|/σm

2σm
. (13.7)
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where, again, ∆ym = (ym − a · f(xm)). For this, the logarithm of the likelihood function is (we

exclude the term involving logΠM−1
m=0

1
σm

for simplicity)

L(∆ym) = log(L(∆ym)) = −
M−1∑

m=0

[ |ym − a · f(xm))|
σm

]
. (13.8a)

The absolute value signs are horrible to deal with, so we rewrite this as

L(∆ym)) =
∑

∆ym>0

ym − a · f(xm)

σm
−

∑

∆ym<0

ym − a · f(xm)

σm
. (13.8b)

Now we take the derivative of L with respect to an and set it equal to zero to find the maximum.

This gives

dL

dan
=
∑

∆y>0

fn(xm)

σm
−
∑

∆y<0

fn(xm)

σm
= 0 , (13.9)

which is the MARS fit.

13.6. IDL’s related resources

IDL provides the median function, which uses sorting and is much faster than our general

weighted-MARS technique—but of course cannot deal with functional forms. IDL also provides

ladfit (“least absolute deviation fit”), which does a weighted-MARS fit for a straight line. My

routine, polyfit_median, does a weighted-MARS fit for an arbitrary polynomial; it is slightly less

accurate as ladfit for an odd number of points but is slightly better for an even number.



– 52 –

14. FITTING WHEN MORE THAN ONE MEASURED PARAMETERS HAVE

UNCERTAINTIES

We’ve mentioned that one of the essential assumptions of least squares is that the independent

variables are known with high precision and the errors occur only in the measured data. Suppose

you’re fitting two variables, t and y, as in equation 0.1. This essential assumption means that t

is known with high precision and all the uncertainty is in y, and you are minimizing the squares

of the residuals in the y-direction only. If both variables have uncertainties, then you have to be

careful because the essential assumption is violated. If you go ahead with a standard least-squares

fit when there are errors in both coordinates, the slope will be systematically too small.

Thanks to Jefferys (1980), the ML formulation of this problem is straightforward. Nevertheless,

there is a lot of confusion on such fitting and not-inconsiderable propagation of myth. Before

reviewing Jefferys’ formulation, let’s see two approaches:

1. Taylor §8.4 argues that you can account for x-variance σ2
xm

by increasing the y-variance by the

usual error propagation, i.e. define an equivalent y-variance σ2
ym(equiv) = [σ2

ym + (a1σxm)
2],

where a1 is the slope. This is equivalent to our results below.

2. Isobe et al. (1990, ApJ 364, 104) discuss the case incorrectly. Look in particular at their

Section V, where they make 5 numbered recommendations. Two of these are incorrect:

(a) Number 3 says, in essence, that if you have measurement errors in y but not in x, and

want to predict x from y in some future dataset, that you should least-squares fit the x

values (which have no errors) to the y. This is flat wrong. Again, it leads to a slope that

is systematically too small. The proper procedure is to fit y to x in the standard way,

which is consistent with the ML formulation and gives the right answer; then use the

resulting parameters, whose errors you know about, to predict x from y in the future.

(b) Number 4 says that if both x and y have errors, and your main focus is finding the true

slope, you should use their “bisector” method. I won’t explain this because this concept

is wrong.

14.1. A preliminary: Why the slope is systematically small

Why is the derived slope systematically too small if you use the standard least-squares tech-

nique when both variables have errors? To see this, take a look back at equation 0.5, where we

explicitly write the normal equations for fitting a straight line of the form Asm + Btm = ym. To

focus the discussion and make it easy, replace that problem with a single-parameter solution for

only the slope B, and use the usual variables (x, y) in place of (t, y). Then we are fitting the set of

M equations
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Bxm = ym . (14.1a)

The set of two normal equations becomes just the single equation

B[x2] = [xy] , (14.1b)

or, writing out the sums explicitly,

B =

∑M−1
m=0 x∗mym∑M−1
m=0 x∗2m

. (14.1c)

Here we use the star to designate the perfectly-known independent variable x∗m. It is important

to realize that the xm that appear in this equation are the perfectly-known ones x∗m; this is a

fundamental tenet of least-squares fitting, which comes from the concept and principle of maximum

likelihood ML.

Because B is defined by the x∗m and we are asking what happens when we use the imperfectly

known xm instead, let us reduce the problem to the essence and imagine that ym is perfectly known,

i.e. ym = y∗m; and that

x∗m = xm − δxm , (14.2)

where δxm is the observational error in point m. If we do standard least squares on this situation,

then we (incorrectly) rewrite equation 14.1c to read

B =

∑M−1
m=0 xmym∑M−1
m=0 x2m

, (14.3a)

that is, using xm instead of x∗m (because we don’t know what x∗m is!). Substituting equation 14.2,

and remembering that ym = y∗m = Bx∗m, we have

B =

∑M−1
m=0 y∗m(x∗m + δxm)

∑M−1
m=0 (x

∗2
m + 2x∗mδxm + δx2m)

. (14.3b)

Now all terms having δxm sum to zero because the errors are distributed symmetrically around

zero. But the denominator contains δx2m. The denominator is irrevocably increased by this term,

which decreases the derived value of B from its true value. Yes, this is only a second-order effect,

but it matters—after all, χ2 is a second-order quantity! Try some numerical experiments!
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14.2. Jefferys’ Method: Introduction

Elsewhere we have regarded y as the dependent variable with measured errors and x (and its

multiple counterparts) as independent variables that have no measured errors. But sometimes all of

the measured parameter’s have uncertainties. In this case the distinction between “dependent” and

“independent” variables disappears and we need to treat them symmetrically. Moreover, we can

have an arbitrarily large number of variables. This means we need to generalize our notation—and

our mathematical technique. Our treatment follows Jefferys (1980) and we will adopt his notation

in some measure. To explain the method we will follow his example and present the general case

and also show the application to a specific example.

Figure 14.1 compares a conventional fit to y = a0 + a1t with a proper fit when both vari-

ables have uncertainties. The right-hand panel is the conventional fit in which the measurement

uncertainties in t are set equal to zero; the left-hand panel includes the uncertainties in t. Some

important differences are apparent:

1. Errors on the left panel are completely specified by errorbars. On the right panel we could

use vertical errorbars for y and horizontal ones for t, but these would be sufficiently only if

the errors were uncorrelated (as they are for points 0, 2, and 4). However, when they are

correlated we must use error ellipses that specify χ2 = 1.

2. For the left panel, the best-fit points have the same t values as the datapoints but different y

values. For the right panel the best-fit values differ from the data values for both variables.

3. If you look carefully, you’ll see that the fitted slope on the left is a bit smaller than that on

the right. This systematic bias arises from ignoring the errors in t.

14.3. The Data Matrix and Vector

First, a word on notation. We distinguish between scalars, vectors, and matrices as follows: for

Roman letters, vectors are lower-case bold and matrices are UPPER-CASE BOLD. For Greek

letters, scalars are the letter itself (e.g. α), vectors are single-underlined (e.g. φ), and matrices are

double-underlined (e.g. σ).

For the general case we have M experiments. In each experiment we measure J parameters.

We want to combine these (M × J) measurements to derive N coefficients. We denote the matrix

of measured parameters by X, which is (M × J) [using conventional matrix notation, not IDL

notation, in which in the vertical dimension (number of rows) is M and the horizontal dimension

(number of columns) is J ]. We will want to concatenate this matrix to a one-dimensional vector x

of length (MJ). Specifically, the M × J datapoint matrix is
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Conventional Fit

−3 −2 −1 0 1 2 3
t

−3

−2

−1

0

1

2

3

4

y
Proper Fit

−3 −2 −1 0 1 2 3
t

−3

−2

−1

0

1

2

3

4

y

Fig. 14.1.— Comparing a conventional fit for to y = a0 + a1t (left panel) to a proper one when

both measured variables have errors. On the right, the ellipses denote the correlated errors in (t, y);

these are the generalization of the errorbars on the left. The right-hand slope is a bit steeper than

the left-hand one.

X =




x0,0 x0,1 x0,2 . . . x0,J−1

x1,0 x1,1 x1,2 . . . x1,J−1

x2,0 x2,1 x2,2 . . . x2,J−1

. . . . . . .

. . . . . . .

. . . . . . .

xM−1,0 xM−1,1 xM−1,2 . . . xM−1,J−1




(14.4a)

We don’t use this big matrix in the solution. Instead, we turn it into a vector in which the first

J elements are the data for m = 0, the second J elements are for m = 1, etc. So the vector has

dimensions (MJ)× 1, like this:



– 56 –

x =




x0,0
x0,1
x0,2
.

.

.

x0,J−1

x1,0
x1,1
x1,2
.

.

.

x1,J−1

x2,0
x2,1
x2,2
.

.

.

x2,J−1

. . .

. . .

. . .

xM−1,0

xM−1,1

xM−1,2

.

.

.

xM−1,J−1




(14.4b)

One important reason for writing the whole set of data as a vector instead of a matrix is to make it

possible to write the covariance matrix for all measured data in the conventional form, as we now

discuss.
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14.4. The Data Covariance Matrix and Defining Chi-Square

The whole object of fitting is to minimize the chi-square. When all measured parameters

have uncertainties, their uncertainties can be correlated. We have to generalize the definition of

chi-square accordingly.

First, suppose that the observational errors in the datapoints are uncorrelated. Then the

intrinsic variance of each datapoint is described by a single number. In our example, for uncorrelated

observational errors we’d have the variances in the y values be (σ2
y0, σ

2
y1, . . .), and similarly for the

t values; this would give

χ2 =
∑

m

δy2m
σ2
ym

+
δt2m
σ2
tm

(14.5)

However, it is common that errors are correlated. For example, if we were fitting y to a

polynomial in t, then the errors in the various powers of t would certainly be correlated. More

generally, then, the covariances among the different measured values are nonzero. These covariances

are the off-diagonal terms in the covariance matrix. Thus, if we denote the covariance matrix for

the measured x values by the (MJ × (MJ) matrix σ, then the most general case has σ with no

nonzero elements.

Less general, but much more common, is the situation shown in Figure 14.1. Here, the co-

variances among the J measured parameters nonzero are for a particular experiment m, but the

covariances from one experiment m to another are zero; in other words, each experiment is com-

pletely independent of the others. In this less general but very common case, the covariance matrix

looks like this. (Note: we denote the covariance matrix by σ, but it contains variances, not disper-

sions.)

σ =




σ0 0 0 . . .

0 σ1 0 . . .

0 0 σ2 . . .

.

.

.




(14.6)

Here, each element (including the 0 elements) is itself a J × J matrix. For our specific example of

§14.7, J = 2 so σ0 is a covariance matrix of the form

σ0 =

[
σyy σyt
σyt σtt

]
(14.7)



– 58 –

Generally, the chi-square is given by (e.g. Cowan equation 2.39)

χ2 = δxT · σ−1 · δx (14.8)

14.5. Formulation of the Problem and its Solution with Lagrange Multipliers

We will be referring to various versions of the data parameters x and derived parameters

a: measured, best-fit, and (for the iterative solution) guessed. The subscript d denotes the set of

measured datapoints, of which there are (JM). The subscript ∗ denotes the set of best-fit quantities;
these parameters include not only the datapoints x, but also the derived parameters a. We will be

doing an iterative fit using guessed values of both the data and derived parameters, represented by

the subscript g.

We begin by writing exact equations for each measurement. The fitted vales, subscripted with

stars, satisfy the exact equations of condition

f(x∗, a∗) = 0 (14.9a)

This is an M -long vector of functions f(x,a) = 0 (one row for each measurement). This set of M

equations doesn’t do us much good because we don’t know the best-fit (starred) values. Conse-

quently, for the datapoints we define the difference between the best-fit and measured data values

δx = xd − x∗ (14.9b)

This is the negative of Jefferys’ definition of the corresponding quantity v̂ in his section II. With

this, the equation 14.9a becomes

f(xd − δx,a∗) = 0 . (14.9c)

Our goal is to solve these M equations for the (MJ) differences δx and the N parameters a∗ and,

simultaneously, minimize χ2.

This is a classic minimization problem: we minimize χ2 with respect to the (MJ+N) values of

δx and a, subject to the M constraints of equation 14.9c. Such problems are solved using Lagrange

multipliers. Here, the M Lagrange multipliers form the vector λ. We define the Lagrangian L as

L =

[
1

2
δxT · σ−1 · δx

]
+
[
fT(xd − δx,a) · λ

]
; (14.10)
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the 1
2 arises because, for a Gaussian pdf for the errors, the residuals are distributed as e−

χ2

2 (e.g.

Cowan equation 2.28). We differentiate L with respect to each of the unknowns δx and a. The

solution provides a, the vector of N derived coefficients (so a is defined as elsewhere in this tutorial)

together with the MJ fitted datapoints. To proceed, we need the derivatives of f in equation 14.9a

with respect to the vectors x and a, as we now discuss.

14.6. The Derivative Matrices

For the analysis we will need the derivatives of f with respect to the vectors x and a. The

derivatives will always be evaluated at the guessed values xg and ag. The derivative with respect

to x is a M ×MJ matrix and looks like this [We take the case (M = 4, J = 3) for transparency;

subscripts of x are in the order (m, j)]:

∂f(x,a)

∂x

∣

∣

∣

∣

xg,ag

=













∂f
∂x0,0

∂f
∂x0,1

∂f
∂x0,2

0 0 0 0 0 0 0 0 0

0 0 0 ∂f
∂x1,0

∂f
∂x1,1

∂f
∂x1,2

0 0 0 0 0 0

0 0 0 0 0 0 ∂f
∂x2,0

∂f
∂x2,1

∂f
∂x2,2

0 0 0

0 0 0 0 0 0 0 0 0 ∂f
∂xM−1,0

∂f
∂xM−1,1

∂f
∂xM−1,2













(14.11)

where all the derivatives are evaluated at (xg,ag). Much easier is the derivative with respect to a,

which is a M ×N matrix and looks like

∂f(x,a)

∂a

∣∣∣∣
xg,ag

=




∂f
∂a0

∣∣∣
xg,0,ag

∂f
∂a1

∣∣∣
xg,0,ag

∂f
∂a2

∣∣∣
xg,0,ag

... ∂f
∂aN−1

∣∣∣
xg,0,ag

∂f
∂a0

∣∣∣
xg,1,ag

∂f
∂a1

∣∣∣
xg,1,ag

∂f
∂a2

∣∣∣
xg,1,ag

... ∂f
∂aN−1

∣∣∣
xg,1,ag

∂f
∂a0

∣∣∣
xg,2,ag

∂f
∂a1

∣∣∣
xg,2,ag

∂f
∂a2

∣∣∣
xg,2,ag

... ∂f
∂aN−1

∣∣∣
xg,2,ag

.

.

.




(14.12)

where again, all the derivatives are evaluated at (xg,ag).

14.7. The Specific Example

We illustrate the above with this specific example, for which we fit a first-order polynomial to

(t, y) of the form [y = a0 + a1t]; the coefficients are (a0, a1) and [f(x,a) = y − a0 − a1t]. For this

example, the matrix of measured parameters is
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X =




yd0 td0
yd1 td1
yd2 td2
.

.

.




(14.13)

and the concatenated vector version is

x =




yd0
td0
yd1
td1
yd2
td2
.

.

.




(14.14)

The exact vector-of-functions equation f(x∗,a∗) = 0 uses the starred (best-fit) values, and is

f(x∗,a∗) =




y∗0 − a∗0 − a∗1t∗0
y∗1 − a∗0 − a∗1t∗1

.

.

.




=




0

0

.

.

.




(14.15)

The derivative matrix of f with respect to the vector x is

∂f(x,a)

∂x

∣∣∣∣
xg,ag

=




1 −ag1 0 0 0 0 . . .

0 0 1 −ag1 0 0 . . .

0 0 0 0 1 −ag1 . . .

.

.

.




, (14.16)

always evaluated at the guessed values of the parameters (subscript g). The derivative matrix of f

with respect to the vector a is
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∂f(x,a)

∂a

∣∣∣∣
xg,ag

=




−1 −tg0
−1 −tg1
−1 −tg2
.

.

.




, (14.17)

again always evaluated at the guessed values of the parameters (subscript g).

14.8. The Solution to the Lagrangian: Two Matrix Equations

Jefferys does all this this9 for us and, after some algebraic manipulation, provides the two

following matrix equations (from the set of four in his equation 10):

σ−1 · δx+
∂fT(x,a)

∂x

∣∣∣∣
xd,a∗

· λ = 0 (14.18a)

This single matrix equation embodies MJ individual equations. Here we write ∂fT

∂x instead of ∂fT

∂δx

for clarity, and use the fact that they are the negative of each other.

∂fT(x,a)

∂a

∣∣∣∣
xd,a∗

· λ = 0 (14.18b)

This matrix equation embodies N individual equations. These two matrix equations embody

MJ+N individual equations, which is equal to the number of unknowns, so we can solve for them!

In both of these equations, the dimensions of the factors are (Note the transposes!):

σ : (MJ)× (MJ) (14.19a)

δx : MJ × 1 (14.19b)

fT : 1×M (14.19c)

∂fT(x,a)

∂x
: (MJ)×M (14.19d)

9And more: he includes the possibility for additional constraints, the second line in his equation (7). This

introduces additional complications and we ignore this possibility in the interest of pedagogical simplification. For

example, his set of equations (10) has four equations, not two as we write here.
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λ : M × 1 (14.19e)

∂fT(x,a)

∂a
: N ×M (14.19f)

Note that in 14.19d above the dimension is (MJ) ×M : M elements in f , differentiated by (MJ)

different variables x; similarly for 14.19f above.

14.9. Solving Equations 14.18a and 14.18b Iteratively

Generally, these equations are nonlinear and we solve them iteratively using guessed solutions.

We denote the guessed values with subscript g, so we have

ag = guessed values for a∗ (14.20a)

xg = guessed values for x∗ (14.20b)

ITERATION STEP 1: We define the difference between the measured data quantities

and their currently-guessed counterparts

∆xg ≡ xd − xg (14.20c)

Above, our ∆xg is the negative of Jefferys’ v̂. The nonlinear fit solves for corrections to these

guesses, which we denote by ∆xnew (the negative of Jefferys’ v̂new) and ∆anew (which is identical

to Jefferys’ δ̂).

ITERATION STEP 2: We define the following:

1. The M ×M weight matrix W is from Jefferys’ equation (15):

W ≡
[
∂f(x,a)

∂x

∣∣∣∣
xg,ag

· σ · ∂f
T(x,a)

∂x

∣∣∣∣
xg,ag

]−1

(14.21a)

2. The [0, 0] element of his equation (17), which is equivalent to our α (the curvature matrix)

elsewhere in this document:

α ≡ ∂fT(x,a)

∂a

∣∣∣∣
xg,ag

·W · ∂f(x,a)
∂a

∣∣∣∣
xg,ag

(14.21b)

α is N ×N .
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3. The modified equations of condition from his equation (18) (we have a + instead of his −
because ∆xg = −v̂)

φg ≡ f(xg,ag) +

(
∂f(x,a)

∂x

∣∣∣∣
xg,ag

)
·∆xg (14.21c)

φg is M × 1.

ITERATION STEP 3: The solutions follow directly. The matrix equation for ∆anew is

Jefferys equation (17)

α ·∆anew = − ∂fT(x,a)

∂a

∣∣∣∣
xg,ag

·W · φg (14.22)

which is solved for ∆anew in the conventional way by premultiplying both sides by α−1. The

matrix equation for the new, corrected ∆xg is Jefferys equation (19)

∆xnew = −σ · ∂f
T(x,a)

∂x

∣∣∣∣
xg,ag

·W ·
(
φg +

∂f

∂a

∣∣∣∣
xg,ag

·∆anew

)
(14.23)

ITERATION STEP 4: The previous two equations provide corrections to the values xd

and ag. One applies them (Jefferys equation 20):

ag,new = ag +∆anew (14.24a)

xg,new = xd +∆xnew (14.24b)

Note that ∆xnew is applied to xd, not to xg.

ITERATION STEP 5: Return to Iteration Step 1, using these new values ag,new and

xg,new in place of ag and xg. Iterate until convergence. Convergence occurs when all derived

corrrections ∆anew and ∆xnew become negligible. [How do you define “negligible”. . . ]

14.10. Taking all those derivatives!

Why not use numerical derivatives? It’s easier with complicated functions!
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14.11. The Initial Guess

Getting started is the hard part unless the problem is relatively easy. One way is to use

conventional least squares to derive the initial guesses ag. To do this, you designate one particular

variable as the dependent variable and all the others as the independent ones (for which you assume

no errors). Do the conventional least squares solution for the parameters a and use these as the

initial guesses. A good choice for the dependent variable is the one with the largest errors, if there

is one; otherwise the choice is more-or-less arbitrary. For the initial guesses of the data parameters

xg, just use the measured data values xd. If this scheme doesn’t work, you’re on your own!

14.12. The Covariance Matrix (and errors) of the Derived Parameters

The matrix α, which is defined above in equation 14.21b, is the conventionally-defined cur-

vature matrix and its inverse α−1 is the conventionally-defined covariance matrix. Because we

have formulated this problem as a chi-squared one, the elements of this matrix give the covariance

directly. Thus, the errors in the derived parameters can be taken as the square-root of the diagonal

elements of α−1.

One usually wants to calculate the chi-squared of the solution. This involves not only the

best-fit parameters a∗ but also the best fit datapoints x∗. To do this, use equation 14.8 using ∆xg

in place of δx. This is the same as Jefferys’ equation (43).

The expectation value of χ2 is the number of degrees of freedom. In one sense this is just

like the usual least-squares solution: it’s equal to the number of datapoints minus the number of

derived parameters. Here the number of datapoints is not the number of experiments M ; rather,

it’s JM . So the number of degrees of freedom is JM −N .

15. NOTATION COMPARISON WITH NUMERICAL RECIPES

I learned least squares from Appendix A of Chauvenet (1863). He didn’t use χ2 and didn’t

use matrix techniques, but §0 and 1 follows his development quite closely. I wrote the first version

of this document before knowing of NR’s treatment, which explains my orientation towards least

squares instead of chi-square. I’m fortunate in this approach because it made me realize the pitfalls

one can get into with chi-square, as I discuss in §8.

On the other hand, NR describe the least-squares approach with some disdain in the discussion

of equation (15.1.6) and warn that it is “dangerous” because you aren’t comparing the residuals to

the intrinsic inaccuracies of the data. In astronomy, though, more often than not you don’t have

an independent assessment of σm. But you might know the relative weights, and this is a plus for

chi-square fitting. In any case, heed our warnings about chi-square fitting in §8.
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In this writeup I have revised my old notation to agree, partially, with NR’s. This effort wasn’t

completely successful because I didn’t read NR very carefully before starting. To make it easier to

cross-reference this document with NR, I provide the following table of correspondences (left of the

double arrow is ours, to the right is theirs):

X←→ A (15.1a)

Y ←→ b (15.1b)

XT ·X = XX = [α]←→ AT ·A = [α] (15.1c)

XX−1 = XXI = [α]−1 ←→ [α]−1 = [C] = C (15.1d)

I use M for the number of measurements and N for the number of unknown coefficients; NR uses

the opposite, so we have

N ←→M (15.1e)

M ←→ N (15.1f)

Confusing, hey what?

It is a great pleasure to thank Tim Robishaw for his considerable effort in providing detailed

comments on several aspects of this paper. These comments led to significant revisions and im-

provements. He also fixed bad formatting and manuscript glitches. Also, I am deeply appreciative

to Berkeley undergraduate students (Spring 2006) Ashley Bacon and Tiffany Ussery for their per-

sistence and care in discovering small but crucial errors in the original version of §14.
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